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Map

@ Problem: planning in an MDP with large state space
@ Goal: find near-optimal policy in low dimensional family

@ Average Cost
» Parameterize dual LP
» Obtain “agnostic” guarantee
» Queueing network

@ KL-cost
» Exploit Linearly Solvable MDPs
» Parameterize log of loss function
» Crowdsourcing
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Motivation

@ Markov decision process: modeling sequential decisions
@ Decouple learning and planning, e.g. [?]

@ E.g. queueing network, robot planning

@ Can solve for small state spaces

@ Large state spaces: “curse of dimensionality”
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MDPs
A Markov Decision Process is specified by:
@ State space X ={1,..., X}
@ Action space A
@ Transition Kernel P : X' x A — A,
@ Loss function /: X x A — R™
Planning problem:
@ Find policy 7 : X — A 4 to minimize value function

J(x) = Z U(X¢, ) [ Xo = x] (discounted cost)
0

J.(x) = Zf(Xt, “)‘Xo = x] (average cost)

J.(x)=E ZE(Xt, )Xo = x (total cost)
t=0
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Discounted Cost
Earliest attempt to solve planning problem [?]
Define the Bellman Operator L

(L"J)(x) = m;n U(x,a)+~E[J(X1)|Xo = x, A0 = 4]

L7 is an Ly contraction: ||J — J'||ec < Y||L7J = L"J"|]oo
If v < 1, there is a unique solution J* = limy_,., L'XJ
Jisoptimal iff L"J = J

Optimal policy is greedy:

*(alx) = I{a = argmin {(x, ) + E[J*(X1)|Xo = X, Ao = al}
a

Unfortunately, Bellman iteration is O(X?A)
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Average Cost

More complicated: L' not a contraction

Need to measure w.r.t. the average cost, A € R and rely on
Markov Chain stationarity
Define the differential cost function h € RX and Bellman operaton

Lh(x) = min |/(x, ) + zy: P(y|x, a)h(y)

Bellman optimality: Lh = h+ A1

[?] Thm. 8.4.1: Suppose ) and h satisfy Lh > h+ A\1. Then
A<\

Motivates exact average-cost LP [?]

max A\,
Ah

st. h+AX1<Lh

@ Always has a solution [Thm. 8.4.3] for recurrent chains
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Linear Programming Formulation
o Define B € R***X by B(, , , = {x = y}. We can write:

h+A1 < Lh=min |((x,a) + > P(ylx,a)h(y)
y

-
h(x)+ X < U(x,a)+ > P(y|x,a)h(y) Vx,a
y
<~

B(AM+h)<(+ Ph
@ Average-cost LP equivalent too

max \,
A\h

st. B(A\1+h)</(+Ph

@ Dimension X, number of constraints O(XA). Intractable!
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Large state space

@ Parametric class of value functions .J, or h, for 6 € © c R

@ For any value function J or h, there is a greedy policy =y or 7
(the argmax in L")

Problem (Large-State Planning Problem)
Assume:
@ X is very large
@ We have entrywise access to P and /
@ Goal: find 6 to minimize
g,
Greedy policy using value function J ¢

——
Value function of running this greedy policy
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Approximate solutions

@ Approximate Dynamic programming

» Attempt to minimize 6 directly, e.g. OGD
» Approximate policy iteration; e.g. LSPI [?]

@ Approximate Linear program
» For a feature matrix W € RX*9 for some d < X

max A,
\,h

st. B(\l+V0) < (+ PWg
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Previous work

@ Approximate Dynamic Programming (linear approximation of the
value function): [27]

@ Approximate Linear Programming: (approximately solving LP)
222222222

@ Solving LMDPs (with no theoretical guarantees):
[?] and [??]

Alan Malek Large-Scale Planning 11/21



Previous work: average cost

@ Average cost suffers from a new set of problems

» State-relevance vectors are not in average cost LP
» Lyapunov function ideas are hard to extend

@ First algorithms studied: [?]
» Awkward: had one LP to estimate A\ and a second to estimate h*
» Requires feasibility
@ [?] first looked at minimizing the dual LP, but provided no
performance bounds (described versions of DP algorithms in the
dual space)
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Outline

@ Linearly Solvable MDPs
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The Dual

@ Recall: average cost LP
max A\,
A\h
st. B(M+h)</+ Ph
@ Dualis

min (T,
/IERXA

st. 1Tu=1,,>0,(P-B).=0.

@ /. is a stationary distribution of P for 7(a|x) o /4 ,
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The Dual ALP

@ Feature matrix & € R**9; constrain ;: = ®6, 6 € By(0, S)

min  /T®0
GGBZ(O,S)

st. 1700 =1,00>0, (P —B)To0=0.

@ Policy mg(alx) o [(P0)(x, a)]+
@ i, is the stationary distribution of P"¢
@ Intuition: 11y = ®0, so mMing (71, =~ Ming (TdH
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Interpretation

@ ¢ is an approximate stationary distributions
@ The primal of the dual ALP is:
min A
A\h
st. ®T(/+ (P —-B)h—)\1)e€ o

where o = {x e RY|Fv > 0 s.t. x = dTv}
@ Similar to weighted constraint aggregation
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Reducing Constraints

@ Still intractable: d-dimensional problem but O(XA) constraints
@ Form the convex cost function:
c(0) = (700 + H|[®6]_|; + H||(P — B) 0],
=0T00 + H Y [[®p0,00-| +HY_|[(#0)T(P - B). »

(x,a) x!

® Sample (xt,ar) ~ g and y; ~ g
@ Unbiased subgradient estimate:

g4(0) =T — HMH{CD 0 < 0}
‘ qi(xp,a) & e

(PT(P—B).y,)T
Q2(V+)

sgn ((®0)T(P — B).,)
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The Stochastic Subgradient Method for MDPs

Input: Constants S, H > 0, number of rounds T.
Let Mg be the Euclidean projection onto S-radius 2-norm
ball.
Initialize 64 « 1.
fort:=1,2,..., T do
Sample (x¢, at) ~ g and y; ~ Q.
Compute subgradient estimate g;
Update 011 = Mo (0t — nt9t).
end for
Or = lT ZtT:1 Ot.
Return policy 5
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Theorem

Given some ¢ > 0, the 57 produced by the stochastic subgradient
method after T = 1/¢* steps satisfies

(T < min (ET 9+@+O(e)>
T~ 0eB(0,S) €

with probability at least1 — 6, where V = O(Vy + V3) is a violation
function defined by

V() = [[[*6]- ||
Va(6) = (P — B)T®0]|; .

The big-O notation hides polynomials in S, d, Cy, Co, andlog(1/4).
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Discussion

@ Previous bounds were of the form inf,. ||h* — Wr||
@ Can remove the awkward V(¢)/¢ + O(¢) by taking a grid of ¢
@ Constants:

P(x ), ®T(P — B).
Ci = maxw , C> = max H ( ).,x”
x.a  qi(x,a) X ()
———— -
Control via ¢ and g control via structure of P

@ V(0*) measures the difficulty of the problem
@ Assume fast mixing: for every policy =, 37(7) > 0s.t. Vd,d' € A 4,

oP"—dP ;< eV d o],
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Proof Outline

@ First,
=1 {ully €1 +er, [[1T(P = B)[y <2 =
= 7(1)10g(1/64)O(es + c2)

P o =
@ SGD theorem

(Tohr + H(V(B)) <IT66° + H(V(6*)) + O <M)

.

@ Use &0 ~ /iy

H
T = Mg < HO(V4(8%) + Va(6%)) + O (M)

VT
@ Optimize Hand T
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Queueing network example (Rybko-Stolyar)

servery  servers

@ Customers arrive at 14//:3 then move to ji5//14
@ Server 1 processes /14 Of /.4, SErver 2 processes /i, or /i3

@ Features: indicators of sub-blocks in state-action space, stationary
distribution of LONGER and LBSF heuristics

@ Loss is the total queue size
@ a1 =a3=.08,d; =d>,=.12,and d3 = dy = .28, X = 902500
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Experiments: Results

loss of running average ., total consiraint violation of running average average loss of the running average policy
10f
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@ The left plot: linear objective of the running average, i.e. (T®0;.
@ The center plot: sum of the two constraint violations of 0

@ The right plot: (i, The two horizontal lines correspond to the
loss of two heurlstlcs LONGER and LBFS.
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Dual ALP Summary

@ Presented an algorithm to solve average-cost large-scale MDPs

» Restricted the dual LP to a subspace to reduce dimension
» Used Stochastic Gradient Descent to sample constraints

@ Presented oracle inequality guaranteeing we perform well w.r.t.
best policy in the subspace.

@ Demonstrated algorithm on a queueing network
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© Extending to large dimensions
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KL-cost

@ Introduced in [?]
@ A=A ,:we are playing polcies
@ Loss: ((x, P) = q(x) + Dxe(_P || Po (X))
~— O~~~
Learner’s action Base dynamics
@ Infinite loss unless P <« Py

@ Terminal state z: g(z) = 0 and Py(z|z) =1
@ Obejective is total cost:

oo

ZE(XI,P)‘XO = X]

t=0

JP(X) =E

Alan Malek Large-Scale Planning

26/21



Details

o LJp(x) = minp {e(x, P)+ Y, P(y1X)T p(y)
@ Greedy action is:

PL) Po(x'|x)e~7t)
Py(x) _a;g me ZP Y) IOg (y|X)e—J(y) =— Z(x)

with Z = Poe=/
@ This implies LJ = g — log(2)
@ Value function is the solution to:

J=LJ & J=q-log(Poe )

@ Exponentiating: LJ = J < e 9Pge ™’ = e~/
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Parameterizing Jy

@ Previous approaches: Jy = V¢
@ Instead: Jy = —log(Wo)
@ Surrogate optimization:

mincTJ9+||LJ9—J9|| (1)
0 N————

Bellman error

@ |[LJy — Jy|| not convex in 6, but
e max{LJg,Jp} ||LJ9 o J9|| < ||efLJ9 . efJgH
@ Plugging Vo = e~7% into (2?):

mein —cTlog(Vo) + || e 9Po Wl — W
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Parameterizing Jy

@ Previous approaches: Jy = V¢
@ Instead: Jy = —log(Wo)
@ Surrogate optimization:

mincTJ9+||LJ9—J9|| (1)
0 N————

Bellman error
@ ||[LJy— Jy| not convex in 6, but
o= Max{LJy,J o} LTy — Jo|| < ”efLJg _ efJQH
@ Plugging Vo = e~7% into (2?):
mein —CcTlog(wo) + ||§-;q’1:9\|i0 — W

Bellman
operator
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Our algorithm

@ Let 7 be the set of trajectories with x4 ~ ¢ with distribution Q(-)
@ Recall relaxed optimization:

min —cTlog(V6) + [|e~7Pow — Wi,
@ Optimization is equal to:

min —cTlog(wo) + S~ Q(T) Y ‘e‘Q(X)Powa(x) . \Ile(x)‘
0 TeT xeT

@ Use stochastic gradient descent by sampling trajectories
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Theorem

Let§ be an ¢-optimal solution returned by SGD. Then,
JpJg(X1) < inf {JPJ (x1) + 5(.]9)} I

+HPJA QH maxZ|J (x) — LJ5(x))|

Off-policy error

Penalty function:

E(0) =30 Y (@(T)e ™oL 1 Py (7)) | To(x) = LTo(x)]

reT xel SmaII if Jgis
close to the
optimal value
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Proof outline of main theorem

o |Jp, (x1)~ Ty X1)‘=O(||LJ0*—J9*||)

@ Similarly bounding ‘Jp (x1) — J5(x1) ‘ = O (||LJ5 - J5))
@ Jy- and J; are close by the optimization
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Crowdsourcing

Need to label A items.
Each item has soft label //; € [0, 1]

Guess if 11; > % for as many / as we can
Fort=1,...,T:

» Pickae {1,... A}

» Receive X; ~ Bern(/;;)

Use Beta prior = MDP dynamics equivalent to Bayesian updates
Py limits transitions
q(x) rewards correct labels
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posterior classification error

55 Subgradient
- = = =random Opt-KG
uniform

L ——B=25A
0,035 [ - = =B=72A
B=9.1A

normalized budget for data instances

0 01 02 03 04 05 06 07 08 09
soft label

@ Average error of three
policies

@ Our method requires 10%
fewer samples for same
accuracy

@ Portion of budget vs. soft label

@ Harder soft labels receive
more budget

@ Larger difference as B grows
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Crowdsourcing details

@ Obijective: posterior classification error

@ Prior for label i: Beta(a), b))

e State space: all possible integer increments for (&), b))

@ Define: I(a, b) = Pr(0 > .5|0 ~ Beta(a, b)), h(x) = x A (1 — x)

@ Opt-KG: p; x [h(I(a; + 1, b)) A h(I(a;, bi + 1))] — h(I(a;, b;))

@ Base policy: Opt-KG

e Features: For each state {a;, b;}, all E[X]], 1 — E[X;], and E[X?] for
X; ~ Beta(a;, bj)
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Proof part 1

Lemma

Let u € R** be a vector with
TTu=1,[[ully <1+e, [[uT(P = B)ly < e
For the stationary distribution ., of policy ut = [u]+/ ||[u]+]l{, we have

/0y — ully < 7(11y)10g(1/€1)O(er + €2)

@ Let /; be ut after t steps

© [li1p —utly = O(t(cq + c2))

@ Mixing assumption: ||, — /1,[l; < e~ t/7(W")

o Take t = 7(u')log(1/¢') and use triangle inequality
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Applying SGD theorem

Theorem (Lemma 3.1 of [?])

Assume we have
@ Convex set Z C By(Z,0) and (ft)i=1 2. .7 convex functions on Z.
o Gradient estimates f{ with E[f{|z;] = Vf(z) and bound ||f{||, < F
@ Sample Path zy = 0 and z;1 = Nz(z; — nf{) (Mz Euclidean
projection)
Then, forn = Z/(FV'T) and any ¢ € (0, 1), the following holds with
probability at least1 — §:

T T
; fi(zt) — 2‘2; fi(z) <O (Zﬁ (F+ \/log %))
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checking conditions of theorem

@ Recall gradient: for (x,a) ~ gy and y ~ qgp, g;(0) =
D(x.2). (P-B) ¢
(x,a);: Y
TO—H—""T{ Py 5.0 < O}+H—F—
ar(x,a) D) < O G2(Y)

@ We can bound ||g;()[l, < Vd + H(Ci + Cp) := F
°® E[g(0)] = Ve(0).
@ The SDG theorem gives

sgn ((®0)™(P — B).y

TO07 + H(V1(0) + Va(0)) <CT00* + H(V41(6%) + Va(0¥))

ro(e22)
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proof conclusion

@ Wetake,i=1,2
2+2S

+ V1(9*) + V2(9*) + O (01%02) =€

Vi(9) <
@ Apply the lemma to ®6 and ®6*:
iy = Mo < HVA (0% + Va(o7) + 0 (PO EC))
+7(113,)1og(1/¢")O(<')
+7(1162)10g(1/(V1(07) + V2(67)) O(V1(07) + V2(67))

= HO(V(0%) + Vao') + O (O D)

@ Taking H=1/cand T = 1/*:

1
Mg, = e < (Va(6%) + V4(67)) + O(e)
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