
Planning in Large-Scale Markov Decision Problems

Yasin Abbasi-Yadkori 1, Peter Bartlett 12, Xi Chen 3, Alan Malek2

1Queensland University of Technology

2University of California, Berkeley

3NYU Stern School of Business

June 27th, 2016

Alan Malek Large-Scale Planning 1 / 21

Map

Problem: planning in an MDP with large state space
Goal: find near-optimal policy in low dimensional family
Average Cost

I Parameterize dual LP
I Obtain “agnostic” guarantee
I Queueing network

KL-cost
I Exploit Linearly Solvable MDPs
I Parameterize log of loss function
I Crowdsourcing

Alan Malek Large-Scale Planning 2 / 21

Motivation

Markov decision process: modeling sequential decisions
Decouple learning and planning, e.g. [?]
E.g. queueing network, robot planning
Can solve for small state spaces
Large state spaces: “curse of dimensionality”

Alan Malek Large-Scale Planning 3 / 21

Outline

1 Motivation

2 Linearly Solvable MDPs

3 Extending to large dimensions

4 Experiments

Alan Malek Large-Scale Planning 4 / 21

MDPs
A Markov Decision Process is specified by:

State space X = {1, . . . ,X}
Action space A
Transition Kernel P : X ×A → 4X
Loss function ` : X ×A → R+

Planning problem:
Find policy π : X → 4A to minimize value function

Jγπ(x) = E

[∞∑
t=0

γt`(X t , π)

∣∣∣∣∣X 0 = x

]
(discounted cost)

Jπ(x) = lim
n→∞

E

[
1
n

n∑
t=0

`(X t , π)

∣∣∣∣∣X 0 = x

]
(average cost)

Jπ(x) = E

[∞∑
t=0

`(X t , π)

∣∣∣∣∣X 0 = x

]
(total cost)

Alan Malek Large-Scale Planning 5 / 21

Discounted Cost

Earliest attempt to solve planning problem [?]
Define the Bellman Operator Lγ

(LγJ)(x) = min
a
`(x ,a) + γE [J(X 1)|X 0 = x ,A0 = a]

Lγ is an L∞ contraction: ||J − J ′||∞ ≤ γ||LγJ −LγJ ′||∞
If γ < 1, there is a unique solution J∗ = limk→∞LγkJ

J is optimal iff LγJ = J

Optimal policy is greedy:

π∗(a|x) = I{a = arg min
a

`(x ,a) + γE [J∗(X 1)|X 0 = x ,A0 = a]}

Unfortunately, Bellman iteration is O(X 2A)

Alan Malek Large-Scale Planning 6 / 21

Average Cost
More complicated: L1 not a contraction
Need to measure w.r.t. the average cost, λ ∈ R and rely on
Markov Chain stationarity
Define the differential cost function h ∈ RX and Bellman operaton

Lh(x) := min
a∈A

[
`(x ,a) +

∑
y

P(y |x ,a)h(y)

]
Bellman optimality: Lh = h + λ1

[?] Thm. 8.4.1: Suppose λ and h satisfy Lh ≥ h + λ1. Then
λ ≤ λ∗.
Motivates exact average-cost LP [?]

max
λ,h

λ ,

s.t. h + λ1 ≤ Lh

Always has a solution [Thm. 8.4.3] for recurrent chains

Alan Malek Large-Scale Planning 7 / 21

Linear Programming Formulation
Define B ∈ RXA×X by B(x ,a),y = {x = y}. We can write:

h + λ1 ≤ Lh = min
a

[
`(x ,a) +

∑
y

P(y |x ,a)h(y)

]
⇔

h(x) + λ ≤ `(x ,a) +
∑

y

P(y |x ,a)h(y) ∀x ,a

⇔
B(λ1 + h) ≤ `+ Ph

Average-cost LP equivalent too

max
λ,h

λ ,

s.t. B(λ1 + h) ≤ `+ Ph

Dimension X , number of constraints O(XA). Intractable!

Alan Malek Large-Scale Planning 8 / 21

Large state space

Parametric class of value functions Jθ or hθ for θ ∈ Θ ⊂ Rd

For any value function J or h, there is a greedy policy πJ or πh
(the argmax in Lγ)

Problem (Large-State Planning Problem)
Assume:
X is very large
We have entrywise access to P and `
Goal: find θ to minimize

J πJθ︸︷︷︸
Greedy policy using value function Jθ︸ ︷︷ ︸

Value function of running this greedy policy

Alan Malek Large-Scale Planning 9 / 21

Approximate solutions

Approximate Dynamic programming
I Attempt to minimize θ directly, e.g. OGD
I Approximate policy iteration; e.g. LSPI [?]

Approximate Linear program
I For a feature matrix Ψ ∈ RX×d for some d � X

max
λ,h

λ ,

s.t. B(λ1 + Ψθ) ≤ `+ PΨθ

Alan Malek Large-Scale Planning 10 / 21

Previous work

Approximate Dynamic Programming (linear approximation of the
value function): [??]

Approximate Linear Programming: (approximately solving LP)
[?????????].

Solving LMDPs (with no theoretical guarantees):
[?] and [??]

Alan Malek Large-Scale Planning 11 / 21

Previous work: average cost

Average cost suffers from a new set of problems
I State-relevance vectors are not in average cost LP
I Lyapunov function ideas are hard to extend

First algorithms studied: [?]
I Awkward: had one LP to estimate λ and a second to estimate h∗

I Requires feasibility

[?] first looked at minimizing the dual LP, but provided no
performance bounds (described versions of DP algorithms in the
dual space)

Alan Malek Large-Scale Planning 12 / 21

Outline

1 Motivation

2 Linearly Solvable MDPs

3 Extending to large dimensions

4 Experiments

Alan Malek Large-Scale Planning 13 / 21

The Dual

Recall: average cost LP

max
λ,h

λ ,

s.t. B(λ1 + h) ≤ `+ Ph

Dual is

min
µ∈RXA

`ᵀµ ,

s.t. 1ᵀµ = 1, µ ≥ 0, (P −B)ᵀµ = 0 .

µ is a stationary distribution of P π for π(a|x) ∝ µx ,a

Alan Malek Large-Scale Planning 14 / 21

The Dual ALP

Feature matrix Φ ∈ RXA×d ; constrain µ = Φθ, θ ∈ B2(0,S)

min
θ∈B2(0,S)

`ᵀΦθ ,

s.t. 1ᵀΦθ = 1, Φθ ≥ 0, (P −B)ᵀΦθ = 0 .

Policy πθ(a|x) ∝ [(Φθ)(x ,a)]+

µθ is the stationary distribution of Pπθ

Intuition: µθ ≈ Φθ, so minθ `ᵀµθ ≈ minθ `ᵀΦθ

Alan Malek Large-Scale Planning 15 / 21

Interpretation

Φθ is an approximate stationary distributions
The primal of the dual ALP is:

min
λ,h

λ

s.t. Φᵀ(`+ (P −B)h − λ1) ∈ Φ+

where Φ+ =
{

x ∈ Rd |∃ν ≥ 0 s.t. x = Φᵀν
}

Similar to weighted constraint aggregation

Alan Malek Large-Scale Planning 16 / 21

Reducing Constraints

Still intractable: d-dimensional problem but O(XA) constraints
Form the convex cost function:

c(θ) = `ᵀΦθ + H ‖[Φθ]−‖1 + H ‖(P −B)ᵀΦθ‖1
= `ᵀΦθ + H

∑
(x ,a)

∣∣[Φ(x ,a),:θ]−
∣∣+ H

∑
x ′

∣∣(Φθ)ᵀ(P −B):,x ′
∣∣

Sample (x t ,at) ∼ q1 and y t ∼ q2

Unbiased subgradient estimate:

gt (θ) =`ᵀΦ− H
Φ(x t ,at),:

q1(x t ,at)
I{Φ(x t ,at),:θ < 0}

+ H
(Φᵀ(P − B):,y t

)ᵀ

q2(y t)
sgn

(
(Φθ)ᵀ(P −B):,y t

)

Alan Malek Large-Scale Planning 17 / 21

The Stochastic Subgradient Method for MDPs

Input: Constants S,H > 0, number of rounds T .
Let ΠΘ be the Euclidean projection onto S-radius 2-norm
ball.
Initialize θ1 ∝ 1.
for t := 1,2, . . . ,T do

Sample (x t ,at) ∼ q1 and y t ∼ q2.
Compute subgradient estimate gt
Update θt+1 = ΠΘ(θt − ηtgt).

end for
θ̂T = 1

T
∑T

t=1 θt .
Return policy π

θ̂T
.

Alan Malek Large-Scale Planning 18 / 21

Theorem

Given some ε > 0, the θ̂T produced by the stochastic subgradient
method after T = 1/ε4 steps satisfies

`ᵀµ
θ̂T
≤ min

θ∈B(0,S)

(
`ᵀµθ +

V (θ)

ε
+ O(ε)

)
with probability at least 1− δ, where V = O(V 1 + V 2) is a violation
function defined by

V 1(θ) = ‖[Φθ]−‖1
V 2(θ) = ‖(P −B)ᵀΦθ‖1 .

The big-O notation hides polynomials in S, d, C1, C2, and log(1/δ).

Alan Malek Large-Scale Planning 19 / 21

Discussion

Previous bounds were of the form infr ‖h
∗ −Ψr‖

Can remove the awkward V (θ)/ε+ O(ε) by taking a grid of ε
Constants:

C1 = max
x ,a

∥∥Φ(x ,a),:

∥∥
q1(x ,a)︸ ︷︷ ︸

Control via Φ and q1

, C2 = max
x

‖Φᵀ(P −B):,x‖
q2(x)︸ ︷︷ ︸

control via structure of P

V (θ∗) measures the difficulty of the problem
Assume fast mixing: for every policy π, ∃τ(π) > 0 s.t. ∀d ,d ′ ∈ 4X ,∥∥dPπ − d ′Pπ

∥∥
1 ≤ e−1/τ(π)

∥∥d − d ′
∥∥

1

Alan Malek Large-Scale Planning 20 / 21

Proof Outline

First,

1ᵀµ = 1, ‖µ‖1 ≤ 1 + ε1, ‖µᵀ(P −B)‖1 ≤ ε2 ⇒∥∥∥µπµ+
− µ

∥∥∥
1
≤ τ(µµ) log(1/ε1)O(ε1 + ε2)

SGD theorem

`ᵀΦθ̂T + H(V (θ̂)) ≤`ᵀΦθ∗ + H(V (θ∗)) + O
(

SH(C1 + C2)√
T

)
Use Φθ ≈ µθ

`ᵀµ
θ̂T
− `ᵀµθ∗ ≤ HO(V 1(θ∗) + V 2(θ∗)) + O

(
H(C1 + C2)√

T

)
Optimize H and T

Alan Malek Large-Scale Planning 21 / 21

Queueing network example (Rybko-Stolyar)

µ1 µ2

µ3µ4

d1a1

d3 a3

d2

d4

server1 server2

Customers arrive at µ1/µ3 then move to µ2/µ4

Server 1 processes µ1 or µ4, server 2 processes µ2 or µ3

Features: indicators of sub-blocks in state-action space, stationary
distribution of LONGER and LBSF heuristics
Loss is the total queue size
a1 = a3 = .08, d1 = d2 = .12, and d3 = d4 = .28, X = 902500

Alan Malek Large-Scale Planning 22 / 21

Experiments: Results

0 2000 4000 6000 8000
36

37

38

39

40

41

42
loss of running average

0 2000 4000 6000 8000
10

−2

10
−1

10
0

total constraint violation of running average

0 2000 4000 6000 8000
36

38

40

42

44

46

48

50

52
average loss of the running average policy

The left plot: linear objective of the running average, i.e. `ᵀΦθ̂t .
The center plot: sum of the two constraint violations of θ̂t

The right plot: `ᵀµ
θ̂t

. The two horizontal lines correspond to the
loss of two heuristics, LONGER and LBFS.

Alan Malek Large-Scale Planning 23 / 21

Dual ALP Summary

Presented an algorithm to solve average-cost large-scale MDPs
I Restricted the dual LP to a subspace to reduce dimension
I Used Stochastic Gradient Descent to sample constraints

Presented oracle inequality guaranteeing we perform well w.r.t.
best policy in the subspace.
Demonstrated algorithm on a queueing network

Alan Malek Large-Scale Planning 24 / 21

1 Motivation

2 Linearly Solvable MDPs

3 Extending to large dimensions

4 Experiments

Alan Malek Large-Scale Planning 25 / 21

KL-cost

Introduced in [?]
A = 4X : we are playing polcies
Loss: `(x ,P) = q(x) + DKL(P︸︷︷︸

Learner’s action

|| P 0︸︷︷︸
Base dynamics

(·|x))

Infinite loss unless P � P 0

Terminal state z: q(z) = 0 and P 0(z|z) = 1
Obejective is total cost:

JP (x) = E

[∞∑
t=0

`(X t ,P)

∣∣∣∣∣X 0 = x

]

Alan Malek Large-Scale Planning 26 / 21

Details

LJP (x) = minP

[
`(x ,P) +

∑
y P (y |x)JP (y)

]
Greedy action is:

P J (·|x) = arg min
p∈4X

∑
y

p(y) log
p(y)

P 0(y |x)e−J(y)
=

P 0(x ′|x)e−J(x ′)

Z (x)

with Z = P 0e−J

This implies LJ = q − log(Z)

Value function is the solution to:

J = LJ ⇔ J = q − log(P 0e−J)

Exponentiating: LJ = J ⇔ e−qP 0e−J = e−J

Alan Malek Large-Scale Planning 27 / 21

Parameterizing J θ

Previous approaches: Jθ = Ψθ

Instead: Jθ = − log(Ψθ)

Surrogate optimization:

min
θ

cᵀJθ + ‖LJθ − Jθ‖︸ ︷︷ ︸
Bellman error

(1)

‖LJθ − Jθ‖ not convex in θ, but

e−max{LJθ,Jθ} ‖LJθ − Jθ‖ ≤
∥∥e−LJθ − e−Jθ

∥∥
Plugging Ψθ = e−Jθ into (??):

min
θ
−cᵀ log(Ψθ) + ||e−qP 0

︸ ︷︷ ︸
Bellman
operator

Ψθ −Ψθ||

Alan Malek Large-Scale Planning 28 / 21

Parameterizing J θ

Previous approaches: Jθ = Ψθ

Instead: Jθ = − log(Ψθ)

Surrogate optimization:

min
θ

cᵀJθ + ‖LJθ − Jθ‖︸ ︷︷ ︸
Bellman error

(1)

‖LJθ − Jθ‖ not convex in θ, but

e−max{LJθ,Jθ} ‖LJθ − Jθ‖ ≤
∥∥e−LJθ − e−Jθ

∥∥
Plugging Ψθ = e−Jθ into (??):

min
θ
−cᵀ log(Ψθ) + ||e−qP 0︸ ︷︷ ︸

Bellman
operator

Ψθ −Ψθ||

Alan Malek Large-Scale Planning 28 / 21

Our algorithm

Let T be the set of trajectories with x1 ∼ c with distribution Q(·)
Recall relaxed optimization:

min
θ
−cᵀ log(Ψθ) +

∥∥e−qP 0Ψθ −Ψθ
∥∥

Q

Optimization is equal to:

min
θ
−cᵀ log(Ψθ) +

∑
T∈T

Q(T)
∑
x∈T

∣∣∣e−q(x)P 0Ψθ(x)−Ψθ(x)
∣∣∣

Use stochastic gradient descent by sampling trajectories

Alan Malek Large-Scale Planning 29 / 21

Theorem

Let θ̂ be an ε-optimal solution returned by SGD. Then,

JPJ
θ̂

(x1) ≤ inf
θ∈Θ

{
JPJθ

(x1) + E(Jθ)
}

+ ε

+
∥∥∥P J

θ̂
−Q

∥∥∥
1︸ ︷︷ ︸

Off-policy error

max
T∈T

∑
x∈T

∣∣J
θ̂
(x)−LJ

θ̂
(x)
∣∣

Penalty function:

E(Jθ) =
∑
T∈T

∑
x∈T

(
Q(T)e−min(Jθ,LJθ) + P Jθ

(T)
)
|Jθ(x)−LJθ(x)|︸ ︷︷ ︸

Small if Jθ is
close to the

optimal value

Alan Malek Large-Scale Planning 30 / 21

Proof outline of main theorem

∣∣∣JPJθ∗
(x1)− Jθ∗(x1)

∣∣∣ = O (‖LJθ∗ − Jθ∗‖)

Similarly bounding
∣∣∣JP

J θ̂
(x1)− J

θ̂
(x1)

∣∣∣ = O
(∥∥LJ

θ̂
− J

θ̂

∥∥)
Jθ∗ and J

θ̂
are close by the optimization

Alan Malek Large-Scale Planning 31 / 21

Crowdsourcing

Need to label A items.
Each item has soft label µi ∈ [0,1]

Guess if µi ≥ 1
2 for as many i as we can

For t = 1, . . . ,T :
I Pick a ∈ {1, . . . ,A}
I Receive X t ∼ Bern(µi)

Use Beta prior⇒ MDP dynamics equivalent to Bayesian updates
P 0 limits transitions
q(x) rewards correct labels

Alan Malek Large-Scale Planning 32 / 21

B

40 60 80 100 120 140 160 180 200

p
o

s
te

ri
o

r
c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Subgradient
random Opt-KG
uniform

soft label

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n
o

rm
a

liz
e

d
 b

u
d

g
e

t
fo

r
d

a
ta

 i
n

s
ta

n
c
e

s

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

B=2.5A
B=7.2A
B=9.1A

Average error of three
policies
Our method requires 10%
fewer samples for same
accuracy

Portion of budget vs. soft label
Harder soft labels receive
more budget
Larger difference as B grows

Alan Malek Large-Scale Planning 33 / 21

Thanks!

Alan Malek Large-Scale Planning 34 / 21

Crowdsourcing details

Objective: posterior classification error
Prior for label i : Beta(ai

0,b
i
0)

State space: all possible integer increments for (ai
0,b

i
0)

Define: I(a,b) = Pr(θ > .5|θ ∼ Beta(a,b)), h(x) = x ∧ (1− x)

Opt-KG: pi ∝ [h(I(ai + 1,bi)) ∧ h(I(ai ,bi + 1))]− h(I(ai ,bi))

Base policy: Opt-KG
Features: For each state {ai ,bi}, all E[Xi], 1− E[Xi], and E[X 2

i] for
Xi ∼ Beta(ai ,bi)

Alan Malek Large-Scale Planning 35 / 21

Proof part 1

Lemma

Let u ∈ RXA be a vector with

1ᵀu = 1, ‖u‖1 ≤ 1 + ε1, ‖uᵀ(P −B)‖1 ≤ ε2

For the stationary distribution µu of policy u+ = [u]+/ ‖[u]+‖1, we have

‖µu − u‖1 ≤ τ(µu) log(1/ε1)O(ε1 + ε2)

Let µt be u+ after t steps
‖µt − u+‖1 = O(t(ε1 + ε2))

Mixing assumption: ‖µt − µu‖1 ≤ e−t/τ(u+)

Take t = τ(u+) log(1/ε′) and use triangle inequality

Alan Malek Large-Scale Planning 36 / 21

Applying SGD theorem

Theorem (Lemma 3.1 of [?])

Assume we have
Convex set Z ⊆ B2(Z ,0) and (ft)t=1,2,...,T convex functions on Z.
Gradient estimates f ′t with E[f ′t |zt] = ∇f (zt) and bound ‖f ′t ‖2 ≤ F
Sample Path z1 = 0 and zt+1 = ΠZ(zt − ηf ′t) (ΠZ Euclidean
projection)

Then, for η = Z/(F
√

T) and any δ ∈ (0,1), the following holds with
probability at least 1− δ:

T∑
t=1

ft (zt)−min
z∈Z

T∑
t=1

ft (z) ≤ O

(
Z
√

T

(
F +

√
log

1
δ

))

Alan Malek Large-Scale Planning 37 / 21

checking conditions of theorem

Recall gradient: for (x ,a) ∼ q1 and y ∼ q2, gt (θ) =

`ᵀΦ−H
Φ(x ,a),:

q1(x ,a)
I{Φ(x ,a),:θ < 0}+H

(P −B)ᵀ:,y Φ

q2(y)
sgn

(
(Φθ)ᵀ(P −B):,y

)
We can bound ‖gt (θ)‖2 ≤

√
d + H(C1 + C2) := F

E[gt (θ)] = ∇c(θ).
The SDG theorem gives

`ᵀΦθ̂T + H(V 1(θ̂) + V 2(θ̂)) ≤`ᵀΦθ∗ + H(V 1(θ∗) + V 2(θ∗))

+ O
(

SH(C1 + C2)√
T

)

Alan Malek Large-Scale Planning 38 / 21

proof conclusion
We take, i = 1,2

V i(θ̂) ≤ 2 + 2S
H

+ V 1(θ∗) + V 2(θ∗) + O
(

C1 + C2√
T

)
:= ε′

Apply the lemma to Φθ̂ and Φθ∗:

`ᵀµ
θ̂T
− `ᵀµθ∗ ≤ H(V 1(θ∗) + V 2(θ∗)) + O

(
H(C1 + C2)√

T

)
+ τ(µ

θ̂T
) log(1/ε′)O(ε′)

+ τ(µθ∗) log(1/(V 1(θ∗) + V 2(θ∗))O(V 1(θ∗) + V 2(θ∗))

= HO(V 1(θ∗) + V 2(θ∗)) + O
(

H(C1 + C2)√
T

)

Taking H = 1/ε and T = 1/ε4:

`ᵀµ
θ̂T
− `ᵀµθ∗ ≤

1
ε

(V 1(θ∗) + V 1(θ∗)) + O(ε)

Alan Malek Large-Scale Planning 39 / 21

	Motivation

