## Horizon-Free Minimax Optimal Online Linear Regression

Alan Malek Peter Bartlett

## Model: Online Linear Regression

Given: covariate set $\mathcal{X} \in \mathbb{R}^{d}$, label set $\mathcal{Y} \in \mathbb{R}$.
On each round $t=1,2, \ldots$

- Environment reveals $x_{t} \in \mathcal{X}\left(x_{1}^{t-1}\right)$
- We play $\hat{y}_{t} \in \mathbb{R}$
- Environment reveals true label $y_{t} \in \mathcal{Y}\left(x_{1}^{t}\right)$
- We incur loss $\left(y_{t}-\hat{y}_{t}\right)^{2}$
- Environment may continue or end the game

Environment may be adversarial; we cannot control loss, but we can control the Regret,

$$
\mathcal{R}:=\underbrace{\sum_{t \geq 1}\left(\hat{y}_{t}-y_{t}\right)^{2}}_{\text {Our Loss }}-\min _{\theta \in \mathbb{R}^{d}} \underbrace{\sum_{t \geq 1}\left(\theta^{\top} \boldsymbol{x}_{t}-y_{t}\right)^{2}}_{\text {Best Linear Predictor }}
$$

## IN 1-D




Round 3

## Minimax Regret

The best we can do against the worst case adversary is

$$
\left\langle\max _{\boldsymbol{x}_{t}} \min _{\hat{y}_{t}} \max _{y_{t}}\right\rangle_{t=1}^{T} \sum_{t=1}^{T}\left(\hat{y}_{t}-y_{t}\right)^{2}-\min _{\theta \in \mathbb{R}^{d}} \sum_{t=1}^{T}\left(\theta^{\top} \boldsymbol{x}_{t}-y_{t}\right)^{2}
$$

calculated by the backward induction (for known $T$ )

$$
V_{T}\left(\boldsymbol{x}_{1}^{T}, y_{1}^{T}\right):=-\min _{\theta} \sum_{t=1}^{T}\left(\theta^{\top} \boldsymbol{x}_{t}-y_{t}\right)^{2}
$$

$V_{t-1}\left(x_{1}^{t-1}, y_{1}^{t-1}\right):=\max _{x_{t}} \min _{\hat{y}_{t}} \max _{y_{t}}\left(y_{t}-\hat{y}_{t}\right)^{2}+V_{t}\left(\boldsymbol{x}_{1}^{t}, y_{1}^{t}\right)$

## Fixed Design Case [Previous work]

Theorem 1 Assume that $\boldsymbol{x}_{1}^{T}$ is fixed and let $B_{1}^{T}$ be a sequence of label bounds. If $\boldsymbol{x}_{1}^{T} \in \mathcal{B}\left(B_{1}^{T}\right):=\left\{\boldsymbol{x}_{1}^{T}: B_{t} \geq \sum_{s=1}^{t-1}\left|\boldsymbol{x}_{t}^{\top} \boldsymbol{P}_{t} \boldsymbol{x}_{s}\right| B_{s}\right.$ for $\left.2 \leq t\right\}$ and $y_{1}^{T} \in \mathcal{L}\left(B_{1}^{T}\right)=\left\{y_{t}:\left|y_{t}\right| \leq B_{t}\right\}$, then the minimax strategy calculates states $s_{t}=\sum_{s=1}^{t} y_{s} \boldsymbol{x}_{s}$ and $\Pi_{t}=\sum_{s=1}^{t} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top}$ and plays

$$
\hat{y}_{t+1}=x_{t+1}^{\top} P_{t+1} s_{t}
$$

with coefficient matrices defined by
simple linear predictor

$$
P_{T}=\Pi_{T}^{\dagger} \text { and recursion } P_{t}=P_{t+1}+P_{t+1} x_{t+1} \boldsymbol{x}_{t+1}^{\top} \boldsymbol{P}_{t+1}
$$

- Can compute $V_{t}\left(y_{1}^{t}\right)$ by backwards induction efficiently
- Applying Sherman-Morrison yields

$$
P_{t}^{\dagger}=\Pi_{t}+\sum_{s=t+1}^{T} \frac{x_{s}^{\top} P_{s} x_{s}}{1+x_{s}^{\top} P_{s} x_{s}} x_{s} x_{s}^{\top} \succeq \Pi_{t}
$$

## Forward Recursion

- How can we generalize to adversarial design? Looks hard:

$$
\text { - For fixed-design, every } \boldsymbol{P}_{t} \text { depends on all } \boldsymbol{x}_{1}^{T}
$$

- Full backwards induction with $\max _{x_{t}}$ is intractable
- Key observation: we can invert the recursion. Given base case $\Sigma_{0}=P_{0}^{\dagger}$, define

$$
\begin{equation*}
\boldsymbol{P}_{t}:=\boldsymbol{P}_{t-1}-\frac{a_{t}}{b_{t}^{2}} \boldsymbol{P}_{t-1} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} \boldsymbol{P}_{t-1} \tag{1}
\end{equation*}
$$

for $b_{t}^{2}:=\boldsymbol{x}_{t}^{\top} \boldsymbol{P}_{t-1} \boldsymbol{x}_{t}, a_{t}:=\left(\sqrt{4 b_{t}^{2}+1}-1\right)\left(\sqrt{4 b_{t}^{2}+1}+1\right)^{-1}$

- Treat $\Sigma$ as a covariate budget for the adversary:

$$
\begin{aligned}
\mathcal{A}(\Sigma) & :=\left\{x_{1}^{T}: \text { for } P_{0}, \ldots, P_{T} \text { defined by }(1), P_{0}^{\dagger} \preceq \Sigma\right\} \\
& =\left\{x_{1}^{T}: P_{0}^{\dagger}=\Sigma \text { and } P_{t}^{\dagger} \succeq \Pi_{t} \forall t \geq 1\right\}
\end{aligned}
$$

- If the adversary plays $\boldsymbol{x}_{1}^{T}$ with $P_{0}\left(\boldsymbol{x}_{1}^{T}\right)^{\dagger}=\boldsymbol{\Sigma}$, then we responded optimally!


## Hold Your Horses

Lemma 1 Fix any $\boldsymbol{\Sigma}$ and any $\left\{B_{t}\right\}$ with $B_{t} \geq b>0$ for all $t$. Then, for any $M>0$, there exists $\boldsymbol{x}_{1}^{T} \in \mathcal{A}(\boldsymbol{\Sigma}) \cap \mathcal{B}\left(B_{t}, \boldsymbol{\Sigma}\right)$ and $y_{1}^{T} \in \mathcal{L}\left(B_{t}\right)$ such that the minimax regret is larger than $M$.
$\mathcal{B}$ using $P_{t}$
defined by (1)

- In general, constraining $\boldsymbol{x}_{1}^{T} \in \mathcal{A}(\boldsymbol{\Sigma})$ is not sufficient
- For a finite sequence, the regret of $\boldsymbol{x}_{1}^{T}$ can be $O(\log (T))$


## $U_{1}$

## Expanded conditions

- Define label budget $\gamma_{0}>0$ with update $\gamma_{t}=\gamma_{t-1}-B_{t}^{2} \boldsymbol{x}_{t}^{\top} \boldsymbol{P}_{t} \boldsymbol{x}_{t}$
- Define the continuation conditions

$$
\mathcal{C}\left(\boldsymbol{\Sigma}, \gamma_{0}\right):=\left\{\boldsymbol{x}_{1}^{T}: s_{t}^{\top}\left(\Pi_{t}^{\dagger}-\boldsymbol{P}_{t}\right) s_{t} \leq \gamma_{t} \forall t \geq 0, \forall s_{t}\right\}
$$

where $s_{t}$ ranges over all $\boldsymbol{x}_{1}^{T} \in \mathcal{A}(\boldsymbol{\Sigma}) \cap \mathcal{B}\left(B_{t}, \boldsymbol{\Sigma}\right)$ and $y_{1}^{T} \in \mathcal{L}\left(B_{t}\right)$
Theorem 2 For any $\left\{B_{t}\right\}>0, \Sigma \succ 0$ and $\gamma_{0} \geq 0$, (MMS) with $P_{t}$ defined by (1) has minimax regret $\gamma_{0}$ and is horizon-independent minimax optimal; that is, over all strategies
$\sup _{T}\left(\sup _{\boldsymbol{x}_{1}^{T}, y_{1}^{T}} R_{T}\left((\mathrm{MMS}), \boldsymbol{x}_{1}^{T}, y_{1}^{T}\right)-\min _{s} \sup _{\boldsymbol{x}_{1}^{T}, y_{1}^{T}} R_{T}\left(s, \boldsymbol{x}_{1}^{T}, y_{1}^{T}\right)\right)=0$,
over $\boldsymbol{x}_{1}^{T} \in \mathcal{A}(\boldsymbol{\Sigma}) \cap \mathcal{B}\left(B_{t}\right) \cap \mathcal{C}\left(\boldsymbol{\Sigma}, \gamma_{0}\right)$ and $y_{1}^{T} \in \mathcal{L}\left(B_{t}\right)$

- Removing $\mathcal{A}, \mathcal{B}$, or $\mathcal{C}$ lets the adversary cause infinite regret
- We can compete with strategies that know $T$ and $\gamma_{0}$
- The game-length measure $T$ is replaced with the more natural measure $\Sigma$


## Proof Intuition

- The proof defines an "early stopping game", where $\boldsymbol{x}_{1}^{T}$ are fixed but the adversary can stop any round
- We calculate the difference in regret between stopping at $t$ and continuing until $T$
- Shorter games may cause more regret because (mMS) is overregularizing
- The $\mathcal{C}$ condition holds when the adversary always causes more regret by continuing
- Under $\mathcal{C}$, the adversary wants to play out the budget, which is the setting where (MMS) is optimal


## FTRL

(MMS) is Follow the Regularized Leader that plays

$$
\hat{y}_{t}=\widehat{\theta}_{t}^{\top} \boldsymbol{x}_{t} \text { where } \widehat{\theta}_{t}:=\min _{\theta} \sum_{s=1}^{t-1}\left(\theta^{\top} \boldsymbol{x}_{s}-y_{s}\right)^{2}+\theta^{\top} \boldsymbol{R}_{t} \theta
$$

with $\boldsymbol{R}_{0}:=\boldsymbol{\Sigma}^{-1}$ and $\boldsymbol{R}_{t}:=\boldsymbol{R}_{t-1}+\frac{1}{1+\boldsymbol{x}_{t}^{\top} P_{t} \boldsymbol{x}_{t}} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}-\boldsymbol{x}_{t-1} \boldsymbol{x}_{t-1}^{\top}$
Comparison with other methods:

1. Ridge regression: $\boldsymbol{R}_{t}=\lambda_{t} \boldsymbol{I}$
2. Last-step-minimax: $\boldsymbol{R}_{t}=\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}$
3. OLS: $\boldsymbol{R}_{t}=0$
