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θ3ŷ3

y3

x1x2 x3

y1

y2

y3

θ∗

Horizon-FreeMinimaxOptimalOnlineLinearRegression
Alan Malek Peter Bartlett

Model: Online Linear Regression
Given: covariate set X ∈ Rd, label set Y ∈ R.
On each round t = 1, 2, . . . ,

• Environment reveals xt ∈ X (xt−11 )

• We play ŷt ∈ R
• Environment reveals true label yt ∈ Y(xt1)

• We incur loss (yt − ŷt)2
• Environment may continue or end the game

Environment may be adversarial; we cannot control loss, but we can
control the Regret,

R :=
∑
t≥1

(ŷt − yt)2︸ ︷︷ ︸
Our Loss

− min
θ∈Rd

∑
t≥1

(
θ>xt − yt

)2
︸ ︷︷ ︸
Best Linear Predictor
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ŷ2

y2

x

y

Round 3

x3

θ3ŷ3
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Minimax Regret
The best we can do against the worst case adversary is〈

max
xt

min
ŷt

max
yt

〉T
t=1

∑T
t=1(ŷt − yt)2 −minθ∈Rd

∑T
t=1(θ>xt − yt)2,

calculated by the backward induction (for known T )

VT (xT1 , y
T
1 ) := −min

θ

∑T
t=1(θ>xt − yt)2

Vt−1(xt−11 , yt−11 ) := max
xt

min
ŷt

max
yt

(yt − ŷt)2 + Vt(x
t
1, y

t
1)

Fixed Design Case [previous work]
Theorem 1 Assume that xT1 is fixed and let BT1 be a sequence of label
bounds. If xT1 ∈ B(BT1 ) :=

{
xT1 : Bt ≥

∑t−1
s=1

∣∣x>t P txs
∣∣Bs for 2 ≤ t

}
and yT1 ∈ L(BT1 ) = {yt : |yt| ≤ Bt}, then the minimax strategy calcu-
lates states st =

∑t
s=1 ysxs and Πt =

∑t
s=1 xsx

>
s and plays

ŷt+1 = x>t+1P t+1st

simple linear predictor

(mms)

with coefficient matrices defined by

P T = Π†T and recursion P t = P t+1 + P t+1xt+1x
>
t+1P t+1.

• Can compute Vt(yt1) by backwards induction efficiently
• Applying Sherman-Morrison yields

P †t = Πt +
∑T
s=t+1

x>
s P sxs

1+x>
s P sxs

xsx
>
s � Πt

Forward Recursion
• How can we generalize to adversarial design? Looks hard:

– For fixed-design, every P t depends on all xT1
– Full backwards induction with maxxt

is intractable

• Key observation: we can invert the recursion. Given base case
Σ0 = P †0, define

P t := P t−1 −
at

b2t
P t−1xtx

>
t P t−1 (1)

for b2t := x>t P t−1xt, at :=

(√
4b2t + 1− 1

)(√
4b2t + 1 + 1

)−1
• Treat Σ as a covariate budget for the adversary:

A(Σ) :=
{
xT1 : for P 0, . . . ,P T defined by (1), P †0 � Σ

}
=
{
xT1 : P †0 = Σ and P †t � Πt ∀t ≥ 1

}
• If the adversary plays xT1 with P 0(xT1 )† = Σ, then we responded

optimally!

Hold Your Horses
Lemma 1 Fix any Σ and any {Bt} with Bt ≥ b > 0 for all t. Then,
for any M > 0, there exists xT1 ∈ A(Σ) ∩ B(Bt,Σ)

B using P t

defined by (1)

and yT1 ∈ L(Bt)
such that the minimax regret is larger than M .

• In general, constraining xT1 ∈ A(Σ) is not sufficient
• For a finite sequence, the regret of xT1 can be O(log(T ))

Expanded conditions
• Define label budget γ0 > 0 with update γt = γt−1 −B2

tx
>
t P txt

• Define the continuation conditions

C (Σ, γ0) :=
{
xT1 : s>t

(
Π†t − P t

)
st ≤ γt ∀t ≥ 0,∀st

}
,

where st ranges over all xT1 ∈ A(Σ) ∩ B(Bt,Σ) and yT1 ∈ L(Bt)

Theorem 2 For any {Bt} > 0, Σ � 0 and γ0 ≥ 0, (mms) with
P t defined by (1) has minimax regret γ0 and is horizon-independent
minimax optimal; that is,

sup
T

(
sup

xT
1 ,y

T
1

RT ((mms),xT1 , y
T
1 )−min

s

over all strategies

sup
xT

1 ,y
T
1

RT (s,xT1 , y
T
1 )

)
= 0,

over xT1 ∈ A(Σ) ∩ B(Bt) ∩ C(Σ, γ0) and yT1 ∈ L(Bt).

• Removing A, B, or C lets the adversary cause infinite regret
• We can compete with strategies that know T and γ0
• The game-length measure T is replaced with the more natural

measure Σ

Proof Intuition
• The proof defines an “early stopping game”, where xT1 are fixed

but the adversary can stop any round
• We calculate the difference in regret between stopping at t and

continuing until T
• Shorter games may cause more regret because (mms) is over-

regularizing
• The C condition holds when the adversary always causes more

regret by continuing
• Under C, the adversary wants to play out the budget, which is

the setting where (mms) is optimal

FTRL
(mms) is Follow the Regularized Leader that plays

ŷt = θ̂
>
t xt where θ̂t := min

θ

t−1∑
s=1

(θ>xs − ys)2 + θ>Rtθ

with R0 := Σ−1 and Rt := Rt−1 + 1
1+x>

t P txt
xtx

>
t − xt−1x>t−1

Comparison with other methods:
1. Ridge regression: Rt = λtI

2. Last-step-minimax: Rt = xtx
>
t

3. OLS: Rt = 0


