HORIZON-FREE MINIMAX OPTIMAL ONLINE LINEAR REGRESSION

On each round $t = 1, 2, \ldots$,

control the *Regret*,

$$\left\langle \max_{\boldsymbol{x}_t} \min_{\hat{y}_t} \max_{\boldsymbol{y}_t} \right\rangle_{t=1}^T \sum_{t=1}^T (\hat{y}_t - \boldsymbol{y}_t)^2 - \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{t=1}^T (\boldsymbol{\theta}_t)^2 - \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{t=1}^T (\boldsymbol{\theta}_t)^2$$

calculated by the backward induction (for known T)

$$V_T(\boldsymbol{x}_1^T, \boldsymbol{y}_1^T) \coloneqq -\min_{\boldsymbol{\theta}} \sum_{t=1}^T (\boldsymbol{\theta}^\top \boldsymbol{x}_t - \boldsymbol{y}_t)^2$$
$$V_{t-1}(\boldsymbol{x}_1^{t-1}, \boldsymbol{y}_1^{t-1}) \coloneqq \max\min\max(\boldsymbol{y}_t - \hat{\boldsymbol{y}}_t)^2 + V_t(\boldsymbol{y}_t)^2$$

simple linear predictor

(MMS)

$$\vdash \mathbf{P}_{t+1} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^{\top} \mathbf{P}_{t+1}.$$

 \mathcal{B} using \boldsymbol{P}_t defined by (1)

EXPANDED CONDITIONS

• Define the *continuation conditions*

 $\mathcal{C}\left(\mathbf{\Sigma}, \gamma_{0}
ight) \coloneqq \left\{ oldsymbol{x}_{1}^{T}: oldsymbol{x}_{2}^{T}: oldsymbol{x}_$

minimax optimal; that is,

$$\sup_{T} \left(\sup_{\boldsymbol{x}_{1}^{T}, \boldsymbol{y}_{1}^{T}} R_{T}((\text{MMS}), \boldsymbol{x}_{1}^{T}, \boldsymbol{y}_{1}^{T}) - \min_{s} \sup_{\boldsymbol{x}_{1}^{T}, \boldsymbol{y}_{1}^{T}} R_{T}(s, \boldsymbol{x}_{1}^{T}, \boldsymbol{y}_{1}^{T}) \right) = 0,$$

over $\boldsymbol{x}_1^T \in \mathcal{A}(\boldsymbol{\Sigma}) \cap \mathcal{B}(B_t) \cap \mathcal{C}(\boldsymbol{\Sigma})$

- measure Σ

PROOF INTUITION

- but the adversary can stop any round
- continuing until T
- regularizing
- regret by continuing
- the setting where (MMS) is optimal

FTRL

(MMS) is Follow the Regularized Leader that plays

$$\hat{y}_t = \widehat{\boldsymbol{\theta}}_t^\top \boldsymbol{x}_t \text{ where } \widehat{\boldsymbol{\theta}}_t \coloneqq \min_{\boldsymbol{\theta}} \sum_{s=1}^{t-1} (\boldsymbol{\theta}^\top \boldsymbol{x}_s - \boldsymbol{y}_s)^2 + \boldsymbol{\theta}^\top \boldsymbol{R}_t \boldsymbol{\theta}$$

with $\boldsymbol{R}_0 \coloneqq \boldsymbol{\Sigma}^{-1}$ and $\boldsymbol{R}_t \coloneqq \boldsymbol{I}$

Comparison with other methods:

- 1. Ridge regression: $\mathbf{R}_t = \lambda_t \mathbf{I}$
- 2. Last-step-minimax: $\mathbf{R}_t = \mathbf{x}_t \mathbf{x}_t^{\top}$
- 3. OLS: $R_t = 0$

• Define label budget $\gamma_0 > 0$ with update $\gamma_t = \gamma_{t-1} - B_t^2 \boldsymbol{x}_t^\top \boldsymbol{P}_t \boldsymbol{x}_t$

$$\boldsymbol{s}_t^{\top} \left(\boldsymbol{\Pi}_t^{\dagger} - \boldsymbol{P}_t \right) \boldsymbol{s}_t \leq \boldsymbol{\gamma}_t \; \forall t \geq 0, \forall \boldsymbol{s}_t \Big\},$$

where s_t ranges over all $\boldsymbol{x}_1^T \in \mathcal{A}(\boldsymbol{\Sigma}) \cap \mathcal{B}(B_t, \boldsymbol{\Sigma})$ and $\boldsymbol{y}_1^T \in \mathcal{L}(B_t)$

Theorem 2 For any $\{B_t\} > 0$, $\Sigma \succ 0$ and $\gamma_0 \geq 0$, (MMS) with \mathbf{P}_t defined by (1) has minimax regret γ_0 and is horizon-independent

over all strategies

$$(\boldsymbol{\Sigma}, \boldsymbol{\gamma}_0) \text{ and } y_1^T \in \mathcal{L}(B_t).$$

• Removing \mathcal{A}, \mathcal{B} , or \mathcal{C} lets the adversary cause infinite regret • We can compete with strategies that know T and γ_0 • The game-length measure T is replaced with the more natural

• The proof defines an "early stopping game", where \boldsymbol{x}_1^T are fixed

• We calculate the difference in regret between stopping at t and

• Shorter games may cause more regret because (MMS) is over-

• The \mathcal{C} condition holds when the adversary always causes more

• Under \mathcal{C} , the adversary wants to play out the budget, which is

$$\mathbf{x}_{t-1} + rac{1}{1+\mathbf{x}_t^{\top} \mathbf{P}_t \mathbf{x}_t} \mathbf{x}_t \mathbf{x}_t^{\top} - \mathbf{x}_{t-1} \mathbf{x}_{t-1}^{\top}$$