HORIZON-FREE MINIMAX OPTIMAL ONLINE LINEAR REGRESSION

MODEL: ONLINE LINEAR REGRESSION

(Given: covariate set X € Rd, label set )V € R.
On eachround t=1,2,...,

e Environment reveals x; € X (:Eﬁ_l)

e We play 7, € R

e Environment reveals true label y, € Y(x)
o

o

We incur loss (v, — 1, )*
Environment may continue or end the game

Environment may be adversarial; we cannot control loss, but we can
control the Regret,

R = Z(?)t — yt)2

t>1

Our Loss Best Linear Predictor

Loss of the best

MINIMAX REGRET

The best we can do against the worst case adversary is

T
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calculated by the backward induction (for known T)
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FIXED DESIGN CASE [PREVIOUS WORK] EXPANDED CONDITIONS

Theorem 1 Assume that xi is fized and let Bi be a sequence of label
bounds. If x1 € B(Bi) := {mip . By > 22;11 @, Pixg| By for 2 < t}

and yi € L(Bi) = {y, : |ys| < By}, then the minimaz strategy calcu-
lates states s; = 22:1 Y. xs and Il = 22:1 xr,x.! and plays

e Define label budget v, > 0 with update v, = v,_, — B?z, Pz,

e Define the continuation conditions

C(2,7v,) = {wlT . s, (HI — Pt) s <y, VE > O,Vst} ,

Jpr1 = Tp1Pir18e (MMS) where s; ranges over all 1 € A(X) N B(B;, X) and yi € L(By)

simple linear predictor Theorem 2 For any {B;} > 0, 3 = 0 and vy > 0, (MMS) with

Py defined by (1) has minimax regret v, and s horizon-independent
minimaz optimal; that s,

with coeffictent matrices defined by

P =11 and recursion P, = P P @i 1 P, :
I T t 1 T 1 T 18y e over all strategies

e Can compute V;(v%) by backwards induction efficientl ,
P t(yl) y y SUup ( SUup RT((MMS)v m{’y?) — 111 _-sup RT(87 m{’y{)) — 07

T T S T T
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e Applying Sherman-Morrison yields

-
PI = 1I; + ZT TERLE :BS:EST >~ 11,

s=t+1 T1a] Poam. - over x1 € A(X)NB(B;) NC(X,7,) and yi € L(By).

e Removing A, B, or C lets the adversary cause infinite regret

FORWARD RECURSION e We can compete with strategies that know T and -,

e The game-length measure 1’ is replaced with the more natural
measure XJ

PROOF INTUITION

e How can we generalize to adversarial design? Looks hard:
— For fixed-design, every P; depends on all i

— Full backwards induction with max,, is intractable

e Key observation: we can invert the recursion. Given base case
> = P(T), define

e The proof defines an “early stopping game”, where x are fixed

but the adversary can stop any round

e We calculate the difference in regret between stopping at ¢ and
continuing until 1’

e Shorter games may cause more regret because (MMS) is over-
regularizing

—1
for b2 := @] Pi_1xy, ay = (\/4193 +1— 1) <\/4b§ + 1+ 1>

e The C condition holds when the adversary always causes more
e Treat X as a covariate budget for the adversary:

regret by continuing

e Under C, the adversary wants to play out the budget, which is

1.7 . f
A(X) = {331 for Py, ..., P defined by (1), Py = 2} the setting where (MMS) is optimal

:{m?:szzandPIEHtVtzl}

o If the adversary plays #f with Py(x?f )T = 3, then we responded

optimally! (MMS) is Follow the Regularized Leader that plays

t—1
T ~
1y, = 0, x; where 0y := m@in Z(@TCBS —y )+ 0" R0
s=1

HorLD YOUR HORSES

Lemma 1 Fiz any X and any {B;} with By > b > 0 for all t. Then,
for any M > 0, there exists xi € A(X)NB(B;,X) and y{ € L(B;)
such that the minimax regret s larger than M. B using 7,

defined by (1)

e In general, constraining x1 € A(X) is not sufficient

. . —1 . | 1 I T
with R() = and Rt — Rt—l | 1tz Py LtLy Li—1L4_1

Comparison with other methods:

1. Ridge regression: R; = M1

2. Last-step-minimax: R; = mtw;r

3. OLS: R; =0

e For a finite sequence, the regret of 1 can be O(log(T))




