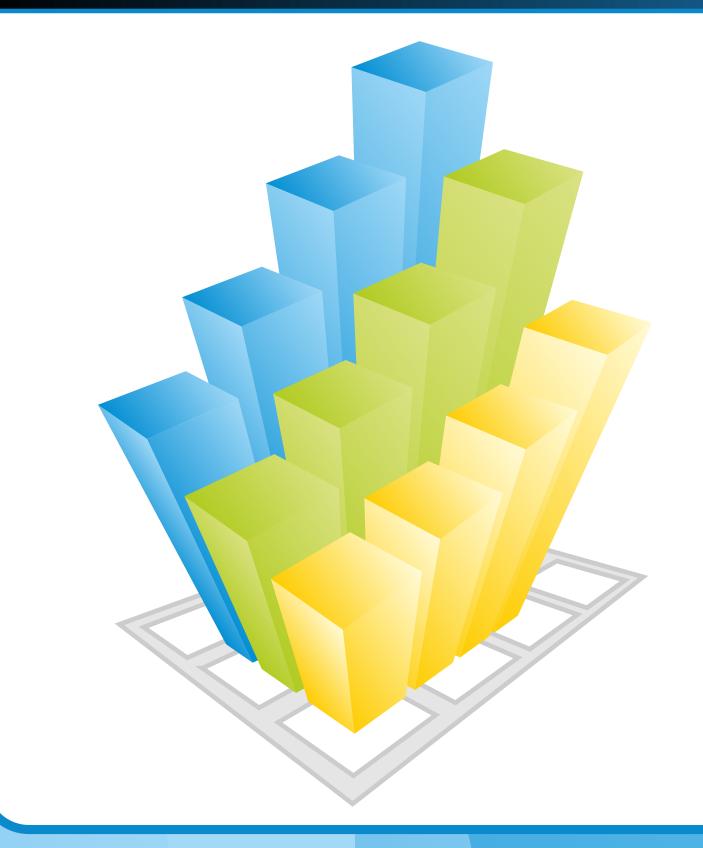
RANDOM PERMUTATION ONLINE ISOTONIC REGRESSION

WOJCIECH KOTŁOWSKI WOUTER M. KOOLEN ALAN MALEK

MOTIVATION



distant goal: online isotonic regression on partial orders

Current solution for linear orders does not scale

New model and algorithms for linear case

(OFFLINE) ISOTONIC REGRESSION

Fit an *isotonic* (non-decreasing) function to the data:

$$f^* = \underset{\text{isotonic } f}{\operatorname{argmin}} \sum_{t=1}^{I} (y_t - f(x_t))^2$$

isotonic regression function

Pool Adjacent Violators Algorithm (PAVA) [Ayer et al., 1955]:

- Iteratively merge data into blocks until no violator of isotonic constraints exists
- Assign to data in each block the average of their labels y_t
- Blocks correspond to *level sets* of f^*

ONLINE ISOTONIC REGRESSION

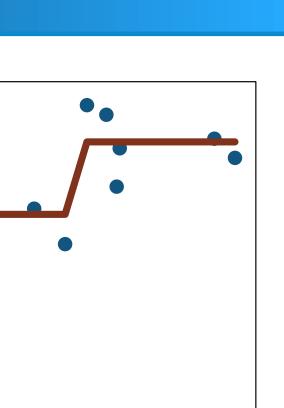
At trial $t = 1 \dots T$: Adversary chooses covariate x_t Learner predicts $\hat{y}_t \in [0, 1]$ Adversary reveals label $y_t \in [0, 1]$ Learner suffers squared loss $(y_t - \hat{y}_t)^2$

• Regret: $\sum_{t=1}^{T} (y_t - \hat{y}_t)^2 -$

$$\min_{\text{sotonic } f} \sum_{t=1}^{T} (y_t - f(x_t))^2$$

total loss of offline IR function

• Linear regret without restriction on x_t



800

RANDOM PERMUTATION MODEL

Random Permutation Model

- Adversary chooses data instances $x_1 < \ldots < x_T, y_1, \ldots, y_T$
- Sample UAR a permutation $\sigma = (\sigma_1, \ldots, \sigma_T)$ of $\{1, \ldots, T\}$
- Round *t*: covariate x_{σ_t} , true label y_{σ_t} , and loss $(\hat{y}_{\sigma_t} y_{\sigma_t})^2$

Learner minimizes *expected regret*,

 $R_T := \mathbb{E}_{\sigma} \left| \sum_{t=1}^T (y_{\sigma_t} - \widehat{y}_{\sigma_t})^2 \right| -$

where $r_t := \mathbb{E}_{\sigma} \left[(y_{\sigma_t} - \hat{y}_{\sigma_t})^2 - L_t^* + L_{t-1}^* \right]$ is the *per-round regret* and $L_t^* = L^*(\{(x_{\sigma_1}, y_{\sigma_1}), \dots, (x_{\sigma_t}, y_{\sigma_t})\})$ is the optimal loss of the first tlabeled instances.

LEAVE-ONE-OUT LOSS

With Data $D = \{(x_1, y_1), \dots, (x_t, y_t)\}$, the ℓoo of a t round game is

$$\mathscr{C}oo_t(D) := \frac{1}{t} \left(\left(\sum_{i=1}^t \left(y_i - \widehat{y}_i(D \setminus (x_i, y_i)) \right)^2 \right) - L^*(D) \right).$$

Lemma 1. $r_t(D) \leq loo_t(D)$ for any t and any data set D = $\{(x_1, y_1), \ldots, (x_t, y_t)\}.$

LOWER BOUND

Adversarial lower bound [Kotłowski, Koolen, and Malek, 2016] applies to random permutation model: $loo_t = \Omega(t^{-2/3})$.

MATCHING BOUNDS

Theorem 2. There is an algorithm for the random-permutation model with excess leave-one-out loss $loo_t = \tilde{O}(t^{-\frac{2}{3}})$ and hence expected regret $R_T \leq$ $\sum_t \tilde{O}(t^{-\frac{2}{3}}) = \tilde{O}(T^{\frac{1}{3}})$, which matches the lower bound of $\ell oo_t = \Omega(t^{-2/3})$.

Caveat: algorithm is not efficient (on partial orders)!

FORWARD ALGORITHMS

Two observations:

- PAVA is efficient and generalizes to partial orders
- *Follow The Leader* algorithms are common in practice

Forward Algorithm: To predict at x_t , imagine $y'_t \in [0, 1]$, compute f^* on $\{(x_1, y_1) \dots (x_{t-1}, y_{t-1})\} \cup \{(x_t, y'_t)\}$, and play $\hat{y}_t = f^*(x_t)$.

$$-L_T^* = \sum_{t=1}^T r_t,$$

FORWARD ALGORITHM EXAMPLES

- nearest x_i .
- Interpolation $\widehat{y}_i = \lambda_i \widehat{y}_i^0 + (1 \lambda_i) \widehat{y}_i^1$
- Last step minimax:

• IVAP predictors [Vovk et al., 2015]:

$$\widehat{y}_i^{\log} = \frac{\widehat{y}_i^1}{\widehat{y}_i^1 + 1 - \widehat{y}_i^2}$$

Regret Bounds

10000	
1/5	2/5

Heavy- γ

Parameters: Weight c > 0 and label $\gamma \in [0, 1]$. **Algorithm:** To predict at x_t

• Predict $y_t = f'(x_t)$

TUNING HEAVY- γ

Any fixed label γ works. We like $\gamma = 1$. (Not all adaptive labels work. Fixed point + lower bound.)

Theorem 5. Heavy- γ has sub-optimal ℓoo_t loss unless $c = \Theta(t^{\frac{1}{3}})$. **Conjecture 6.** Heavy- γ with weight $c = \Theta(t^{\frac{1}{3}})$ has $\ell oo_t = \tilde{O}(t^{-\frac{2}{3}})$.

