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TIME SERIES EVERYWHERE

Pose estimation Self-driving Tracking Finance

WHAT WE DO: ONLINE PREDICTION
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MODEL: TIME SERIES GAME
For some convex set C, each round t = 1, . . . , T

• We play at ∈ C
• Nature reveals xt ∈ C
• We incur loss ‖at − xt‖2

Fix horizon T and regularization scalar λT > 0. Regret is:

T∑
t=1

‖at − xt‖2︸ ︷︷ ︸
Our loss

− min
â1,...,âT

{
T∑
t=1

‖ât − xt‖2︸ ︷︷ ︸
Loss of Comparator

+λT

T+1∑
t=1

‖ât − ât−1‖2︸ ︷︷ ︸
Comparator Complexity

}

OBJECTIVE: MINIMAX REGRET
If we assume a perfect adversary, how well can we do? Value is

V := min
a1

max
x1:‖x1‖≤1

. . .min
aT

max
xT :‖xT ‖≤1

Regret

We play to minimize the worst-case regret; e.g. find at that guaran-
tees we achieve the game’s value.

IN GENERAL

Let Xt = [x1 · · ·xt] and Â = [â1 · · · âT ]. For vt ∈ Rt and K � 0,

Data domain ‖Xtvt‖ ≤ 1 e.g. ‖xt‖ ≤ 1

Complexity tr(KÂ
ᵀ
Â) e.g.

∑T+1
t=1 ‖ât − ât−1‖2

Spectrum of games (in particular: higher order differences)

OFFLINE PROBLEM
Theorem 1 For any complexity matrix K � 0, regularization scalar
λT ≥ 0, and d× T data matrix XT = [x1 · · ·xT ] the problem

L∗ := min
â1,...,âT

T∑
t=1

‖ât − xt‖2 + λT tr(KÂ
ᵀ
Â)

has linear (in XT ) minimizer and quadratic (in XT ) value given by

Â = XT (I + λTK)−1 and L∗ = tr
(
XT (I − (I + λTK)−1)Xᵀ

T

)
.

BACKWARD INDUCTION SOLUTION
We solve for the value-to-go V from each state Xt = [x1 · · ·xt]. We
have V (XT ) := − L∗ and

V (Xt−1) := min
at

max
xt:‖Xtvt‖≤1

‖at − xt‖2 + V (Xt).

The minimax regret V equals value-to-go V (ε) from empty history.

CRUX
Value-to-go V stays quadratic in Xt for all t ≤ T and corresponding
minimax strategy is linear in Xt−1. Remains to compute coefficients.

SINGLE-SHOT SQUARED LOSS GAME
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α

V ∗Theorem 2 If ‖b‖ ≤ 1, then the minimax problem

V ∗ := min
a

max
x:‖x‖≤1

‖a− x‖2 + (α− 1)‖x‖2 + 2bᵀx

has value and minimizer

V ∗ =

{
‖b‖2
1−α if α ≤ 0,

‖b‖2 + α if α ≥ 0,
and a =

{
b

1−α if α ≤ 0,

b if α ≥ 0.

Non-trivial induction:
• Curvature of optimization can switch between rounds
• Yet can pre-compute beforehand

MINIMAX TIME SERIES PREDICTION
We precompute: Input: T , K, λT , v1, . . . ,vT

Using:
• single-shot game solution, and
• lots of matrix identities

Output: matrices Rt =

(
At bt
bᵀt ct

)
Theorem 3 Under a (typical) no clipping condition on XT ,

V (Xt) = tr (Xt (Rt − I)Xᵀ
t ) +

T∑
s=t+1

max{cs, 0}

linear filter
at = Xt−1

{
bt

1−ct if ct ≤ 0,
bt − ctv<tt if ct ≥ 0.

VANILLA CASE NORM-BOUNDED DATA WITH INCREMENT SQUARED REGULARIZATION

• Cheap scalar O(T ) preprocessing sweep.
• Predict in O(d) time per round using O(d) memory.
• Filter weights roughly decay exponentially backwards.
• Can upper and lower bound regret to get

V = Θ

(
T√

1 + λT

)
.

constant λT
overfits

BUT WAIT, THERE’S MORE

• Computation: if K and vt are banded then R−1t is sparse
• Here we imposed data bound ‖Xtvt‖ ≤ 1. In the paper we show

that the minimax strategy guarantees an adaptive bound scaling
with ‖Xtvt‖.

• A second order smoothness version of K gives complicated ct
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Figure 1: vt = et − et−1
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Figure 2: vt = et − 2et−1 + et−2


