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Abstract

We consider an adversarial formulation of the problem of predicting a time series
with square loss. The aim is to predict an arbitrary sequence of vectors almost
as well as the best smooth comparator sequence in retrospect. Our approach al-
lows natural measures of smoothness such as the squared norm of increments.
More generally, we consider a linear time series model and penalize the compara-
tor sequence through the energy of the implied driving noise terms. We derive
the minimax strategy for all problems of this type and show that it can be imple-
mented efficiently. The optimal predictions are linear in the previous observations.
We obtain an explicit expression for the regret in terms of the parameters defining
the problem. For typical, simple definitions of smoothness, the computation of the
optimal predictions involves only sparse matrices. In the case of norm-constrained
data, where the smoothness is defined in terms of the squared norm of the com-
parator’s increments, we show that the regret grows as T/

√
λT , where T is the

length of the game and λT is an increasing limit on comparator smoothness.

1 Introduction

In time series prediction, tracking, and filtering problems, a learner sees a stream of (possibly noisy,
vector-valued) data and needs to predict the future path. One may think of robot poses, meteo-
rological measurements, stock prices, etc. Popular stochastic models for such tasks include the
auto-regressive moving average (ARMA) model in time series analysis, Brownian motion models in
finance, and state space models in signal processing.

In this paper, we study the time series prediction problem in the regret framework; instead of mak-
ing assumptions on the data generating process, we ask: can we predict the data sequence online
almost as well as the best offline prediction method in some comparison class (in this case, offline
means that the comparator only needs to model the data sequence after seeing all of it)? Our main
contribution is computing the exact minimax strategy for a range of time series prediction problems.
As a concrete motivating example, let us pose the simplest nontrivial such minimax problem

min
a1

max
x1∈B

· · ·min
aT

max
xT∈B

T∑
t=1

‖at − xt‖2︸ ︷︷ ︸
Loss of Learner

− min
â1,...,âT

{
T∑
t=1

‖ât − xt‖2︸ ︷︷ ︸
Loss of Comparator

+λT

T+1∑
t=1

‖ât − ât−1‖2︸ ︷︷ ︸
Comparator Complexity

}
.

(1)
This notion of regret is standard in online learning, going back at least to [1] in 2001, which views it
as the natural generalization of L2 regularization to deal with non-stationarity comparators. We offer
two motivations for this regularization. First, one can interpret the complexity term as the magnitude
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of the noise required to generate the comparator using a multivariate Gaussian random walk, and,
generalizing slightly, as the energy of the innovations required to model the comparator using a
single, fixed linear time series model (e.g. specific ARMA coefficients). Second, we can view the
comparator term in Equation (1) as akin to the Lagrangian of a constrained optimization problem.
Rather than competing with the comparator sequence â1, . . . , âT that minimizes the cumulative loss
subject to a hard constraint on the complexity term, the learner must compete with the comparator
sequence that best trades off the cumulative loss and the smoothness. The Lagrange multiplier, λT ,
controls the trade-off. Notice that it is natural to allow λT to grow with T , since that penalizes the
comparator’s change per round more than the loss per round.

For the particular problem (1) we obtain an efficient algorithm using amortizedO(d) time per round,
where d is the dimension of the data; there is no nasty dependence on T as often happens with min-
imax algorithms. Our general minimax analysis extends to more advanced complexity terms. For
example, we may regularize instead by higher-order smoothness (magnitude of increments of incre-
ments, etc.), or more generally, we may consider a fixed linear process and regularize the comparator
by the energy of its implied driving noise terms (innovations). We also deal with arbitrary sequences
of rank-one quadratic constraints on the data.

We show that the minimax algorithm is of a familiar nature; it is a linear filter, with a twist. Its
coefficients are not time-invariant but instead arise from the intricate interplay between the regular-
ization and the range of the data, combined with shrinkage. Fortunately, they may be computed in
a pre-processing step by a simple recurrence. An unexpected detail of the analysis is the follow-
ing. As we will show, the regret objective in (1) is a convex quadratic function of all data, and the
sub-problem objectives that arise from the backward induction steps in the minimax analysis remain
quadratic functions of the past. However, they may be either concave or convex. Changing direction
of curvature is typically a source of technical difficulty: the minimax solution is different in either
case. Quite remarkably, we show that one can determine a priori which rounds are convex and which
are concave and apply the appropriate solution method in each.

We also consider what happens when the assumptions we need to make for the minimax analysis to
go through are violated. We will show that the obtained minimax algorithm is in fact highly robust.
Simply applying it unlicensed anyway results in adaptive regret bounds that scale naturally with the
realized data magnitude (or, more generally, its energy).

1.1 Related Work

There is a rich history of tracking problems in the expert setting. In this setting, the learner has some
finite number of actions to play and must select a distribution over actions to play each round in
such a way as to guarantee that the loss is almost as small as the best single action in hindsight. The
problem of tracking the best expert forces the learner to compare with sequences of experts (usually
with some fixed number of switches). The fixed-share algorithm [2] was an early solution, but there
has been more recent work [3, 4, 5, 6]. Tracking experts has been applied to other areas; see e.g. [7]
for an application to sequential allocation. An extension to linear combinations of experts where the
expert class is penalized by the p-norm of the sequence was considered in [1].

Minimax algorithms for squared Euclidean loss have been studied in several contexts such as Gaus-
sian density estimation [8] and linear regression [9]. In [10], the authors showed that the minimax
algorithm for quadratic loss is Follow the Leader (i.e. predicting the previous data mean) when the
player is constrained to play in a ball around the previous data mean. Additionally, Moroshko and
Krammer [11, 12] propose a weak notion of non-stationarity that allows them to apply the last-step
minimax approach to a regression-like framework.

The tracking problem in the regret setting has been considered previously, e.g. [1], where the authors
studied the best linear predictor with a comparison class of all sequences with bounded smoothness∑
t‖at − at−1‖2 and proposed a general method for converting regret bounds in the static setting

to ones in the shifting setting (where the best expert is allowed to change).

Outline We start by presenting the formal setup in Section 2 and derive the optimal offline predic-
tions. In Section 3 we zoom in to single-shot quadratic games, and solve these both in the convex
and concave case. With this in hand, we derive the minimax solution to the time series prediction
problem by backward induction in Section 4. In Section 5 we focus on the motivating problem
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(1) for which we give a faster implementation and tightly sandwich the minimax regret. Section 6
concludes with discussion, conjectures and open problems.

2 Protocol and Offline Problem

The game protocol is described in Figure 1 and is the usual online prediction game with
squared Euclidean loss. The goal of the learner is to incur small regret, that is, to predict
the data almost as well as the best complexity-penalized sequence â1 · · · âT chosen in hind-
sight. Our motivating problem (1) gauged complexity by the sum of squared norms of the
increments, thus encouraging smoothness. Here we generalize to complexity terms defined
by a complexity matrix K � 0, and charge the comparator â1 · · · âT by

∑
s,tKs,tâ

ᵀ
s ât.

We recover the smoothness penalty of (1) by taking K to be the T × T tridiagonal matrix

For t = 1, 2, . . . , T :

• Learner predicts at ∈ Rd

• Environment reveals xt ∈ Rd

• Learner suffers loss ‖at − xt‖2.

Figure 1: Protocol


2 −1
−1 2 −1

. . .
−1 2 −1

−1 2

 , (2)

but we may also regularize by e.g. the sum of
squared norms (K = I), the sum of norms of higher

order increments, or more generally, we may consider a fixed linear process and take K1/2 to be the
matrix that recovers the driving noise terms from the signal, and then our penalty is exactly the en-
ergy of the implied noise for that linear process. We now turn to computing the identity and quality
of the best competitor sequence in hindsight.
Theorem 1. For any complexity matrix K � 0, regularization scalar λT ≥ 0, and d × T data
matrix XT = [x1 · · ·xT ] the problem

L∗ := min
â1,...,âT

T∑
t=1

‖ât − xt‖2 + λT
∑
s,t

Ks,tâ
ᵀ
s ât

has linear minimizer and quadratic value given by
[â1 · · · âT ] = XT (I + λTK)−1 and L∗ = tr

(
XT (I − (I + λTK)−1)Xᵀ

T

)
.

Proof. Writing Â = [â1 · · · âT ] we can compactly express the offline problem as

L∗ = min
Â

tr
(

(Â−XT )ᵀ(Â−XT ) + λTKÂᵀÂ
)
.

The Â derivative of the objective is 2(Â − XT ) + 2λT ÂK. Setting this to zero yields
the minimizer Â = XT (I + λTK)−1. Back-substitution and simplification result in value
tr
(
XT (I − (I + λTK)−1)Xᵀ

T

)
.

Note that for the choice of K in (2) computing the optimal Â can be performed in O(dT ) time by
solving the linear system A(I + λTKT ) = XT directly. This system decomposes into d (one per
dimension) independent tridiagonal systems, each in T (one per time step) variables, which can each
be solved in linear time using Gaussian elimination.

This theorem shows that the objective of our minimax problem is a quadratic function of the data.
In order to solve a T round minimax problem with quadratic regret objective, we first solve simple
single round quadratic games.

3 Minimax Single-shot Squared Loss Games

One crucial tool in the minimax analysis of our tracking problem will be solving particular single-
shot min-max games. In such games, the player and adversary play prediction a and data x resulting
in payoff given by the following square loss plus a quadratic in x:

V (a,x) := ‖a− x‖2 + (α− 1)‖x‖2 + 2bᵀx. (3)
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V ∗The quadratic and linear terms in x have coefficients α ∈ R and b ∈ Rd. Note
that V (a,x) is convex in a and either convex or concave in x as decided by
the sign of α. The following result, proved in Appendix B.1 and illustrated for
‖b‖ = 1 by the figure to the right, gives the minimax analysis for both cases.
Theorem 2. Let V (a,x) be as in (3). If ‖b‖ ≤ 1, then the minimax problem

V ∗ := min
a∈Rd

max
x∈Rd:‖x‖≤1

V (a,x)

has value V ∗ =

 ‖b‖
2

1− α
if α ≤ 0,

‖b‖2 + α if α ≥ 0,
and minimizer a =


b

1− α
if α ≤ 0,

b if α ≥ 0.
(4)

We also want to look at the performance of this strategy when we do not impose the norm bound
‖x‖ ≤ 1 nor make the assumption ‖b‖ ≤ 1. By evaluating (3) we obtain an adaptive expression
that scales with the actual norm ‖x‖2 of the data.
Theorem 3. Let a be the strategy from (4). Then, for any data x ∈ Rd and any b ∈ Rd,

V (a,x) =
‖b‖2

1− α
+ α

∥∥∥∥ b

1− α
− x

∥∥∥∥2 ≤ ‖b‖2

1− α
if α ≤ 0, and

V (a,x) = ‖b‖2 + α‖x‖2 if α ≥ 0.

These two theorems point out that the strategy in (4) is amazingly versatile. The former theorem
establishes minimax optimality under data constraint ‖x‖ ≤ 1 assuming that ‖b‖ ≤ 1. Yet the latter
theorem tells us that, even without constraints and assumptions, this strategy is still an extremely
useful heuristic. For its actual regret is bounded by the minimax regret we would have incurred if
we would have known the scale of the data ‖x‖ (and ‖b‖) in advance. The norm bound we imposed
in the derivation induces the complexity measure for the data to which the strategy adapts. This
robustness property will extend to the minimax strategy for time series prediction.

Finally, it remains to note that we present the theorems in the canonical case. Problems with a
constraint of the form ‖x − c‖ ≤ β may be canonized by re-parameterizing by x′ = x−c

β and
a′ = a−c

β and scaling the objective by β−2. We find

Corollary 4. Fix β ≥ 0 and c ∈ Rd. Let V ∗(α, b) denote the minimax value from (4) with
parameters α, b. If ‖(α− 1)c + b‖ ≤ β then

min
a

max
x:‖x−c‖≤β

V (a,x) = β2V ∗
(
α,

(α− 1)c + b

β

)
+ 2bᵀc + (α− 1)‖c‖2.

With this machinery in place, we continue the minimax analysis of time series prediction problems.

4 Minimax Time Series Prediction

In this section, we give the minimax solution to the online prediction problem. Recall that the
evaluation criterion, the regret, is defined by

R :=

T∑
t=1

‖at − xt‖2 − min
â1,...,âT

T∑
t=1

‖ât − xt‖2 + λT tr
(
KÂᵀÂ

)
(5)

where K � 0 is a fixed T × T matrix measuring the complexity of the comparator sequence. Since
all the derivations ahead will be for a fixed T , we drop the T subscript on the λ. We study the
minimax problem

R∗ := min
a1

max
x1

· · ·min
aT

max
xT

R (6)

under the constraint on the data that ‖Xtvt‖ ≤ 1 in each round t for some fixed sequence v1, . . .vT
such that vt ∈ Rt. This constraint generalizes the norm bound constraint from the motivating
problem (1), which is recovered by taking vt = et. This natural generalization allows us to also
consider bounded norms of increments, bounded higher order discrete derivative norms etc.
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We compute the minimax regret and get an expression for the minimax algorithm. We show that,
at any point in the game, the value is a quadratic function of the past samples and the minimax
algorithm is linear: it always predicts with a weighted sum of all past samples.

Most intriguingly, the value function can either be a convex or concave quadratic in the last data
point, depending on the regularization. We saw in the previous section that these two cases require
a different minimax solution. It is therefore an extremely fortunate fact that the particular case we
find ourselves in at each round is not a function of the past data, but just a property of the problem
parameters K and vt.

We are going to solve the sequential minimax problem (6) one round at a time. To do so, it is
convenient to define the value-to-go of the game from any state Xt = [x1 · · ·xt] recursively by

V (XT ) := − L∗ and V (Xt−1) := min
at

max
xt:‖Xtvt‖≤1

‖at − xt‖2 + V (Xt).

We are interested in the minimax algorithm and minimax regret R∗ = V (X0). We will show that
the minimax value and strategy are a quadratic and linear function of the observations. To express the
value and strategy and state the necessary condition on the problem, we will need a series of scalars
dt and matrices Rt ∈ Rt×t for t = 1, . . . , T , which, as we will explain below, arises naturally from
the minimax analysis. The matrices, which depend on the regularization parameter λ, comparator
complexity matrix K and data constraints vt, are defined recursively back-to-front. The base case

is RT := (I + λTK)−1. Using the convenient abbreviations vt = wt

(
ut
1

)
and Rt =

(
At bt
bᵀt ct

)
we then recursively define Rt−1 and set dt by

Rt−1 := At + (bt − ctut) (bt − ctut)ᵀ − ctutuᵀ
t , dt :=

ct
w2
t

if ct ≥ 0, (7a)

Rt−1 := At +
btb

ᵀ
t

1− ct
, dt := 0 if ct ≤ 0. (7b)

Using this recursion for dt and Rt, we can perform the exact minimax analysis under a certain
condition on the interplay between the data constraint and the regularization. We then show below
that the obtained algorithm has a condition-free data-dependent regret bound.
Theorem 5. Assume that K and vt are such that any data sequence XT satisfying the constraint
‖Xtvt‖ ≤ 1 for all rounds t ≤ T also satisfies

∥∥Xt−1
(
(ct − 1)ut − bt

)∥∥ ≤ 1/wt for all rounds
t ≤ T . Then the minimax value of and strategy for problem (6) are given by

V (Xt) = tr (Xt (Rt − I)Xᵀ
t ) +

T∑
s=t+1

ds and at = Xt−1

{
bt

1−ct if ct ≤ 0,
bt − ctut if ct ≥ 0,

In particular, this shows that the minimax regret (6) is given byR∗ =
∑T
t=1 dt.

Proof. By induction. The base case V (XT ) is Theorem 1. For any t < T we apply the definition
of V (Xt−1) and the induction hypothesis to get

V (Xt−1) = min
at

max
xt:‖Xtvt‖≤1

‖at − xt‖2 + tr (Xt(Rt − I)Xᵀ
t ) +

T∑
s=t+1

ds

= tr(Xt−1(At − I)Xᵀ
t−1) +

T∑
s=t+1

dt + C

where we abbreviated

C := min
at

max
xt:‖Xtvt‖≤1

‖at − xt‖2 + (ct − 1)xᵀ
t xt + 2xᵀ

tXt−1bt.

Without loss of generality, assume wt > 0. Now, as ‖Xtvt‖ ≤ 1 iff ‖Xt−1ut + xt‖ ≤ 1/wt,
application of Corollary 4 with α = ct, b = Xt−1bt, β = 1/wt and c = −Xt−1ut followed by
Theorem 2 results in optimal strategy

at =

{
Xt−1bt

1−ct if ct ≤ 0,

−ctXt−1ut + Xt−1bt if ct ≥ 0.
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and value

C = (ct−1)‖Xt−1ut‖2−2bᵀtX
ᵀ
t−1Xt−1ut+

{∥∥Xt−1
(
(ct − 1)ut − bt

)∥∥2 /(1− ct) if ct ≤ 0,∥∥Xt−1
(
(ct − 1)ut − bt

)∥∥2 + ct/w
2
t if ct ≥ 0,

Expanding all squares and rearranging (cycling under the trace) completes the proof.

On the one hand, from a technical perspective the condition of Theorem 5 is rather natural. It
guarantees that the prediction of the algorithm will fall within the constraint imposed on the data.
(If it would not, we could benefit by clipping the prediction. This would be guaranteed to reduce the
loss, and it would wreck the backwards induction.) Similar clipping conditions arise in the minimax
analyses for linear regression [9] and square loss prediction with Mahalanobis losses [13].

In practice we typically do not have a hard bound on the data. Sill, by running the above minimax
algorithm obtained for data complexity bounds ‖Xtvt‖ ≤ 1, we get an adaptive regret bound that
scales with the actual data complexity ‖Xtvt‖2, as can be derived by replacing the application of
Theorem 2 in the proof of Theorem 5 by an invocation of Theorem 3.

Theorem 6. Let K � 0 and vt be arbitrary. The minimax algorithm obtained in Theorem 5 keeps
the regret (5) bounded byR ≤

∑T
t=1 dt‖Xtvt‖2 for any data sequence XT .

4.1 Computation, sparsity

In the important special case (typical application) where the regularization K and data
constraint vt are encoding some order of smoothness, we find that K is banded diagonal
and vt only has a few tail non-zero entries. It hence is the case that R−1T−1 = I + λK

is sparse. We now argue that the recursive updates (7) preserve sparsity of the inverse R−1t . In
Appendix C we derive an update for R−1t−1 in terms of R−1t . For computation it hence makes sense
to tabulate R−1t directly. We now argue (proof in Appendix B.2) that all R−1t are sparse.

Theorem 7. Say the vt are V -sparse (all but their tail V entries are zero). And say that K is
D-banded (all but the the main and D − 1 adjacent diagonals to either side are zero). Then each
R−1t is the sum of the D-banded matrix I + λK1:t,1:t and a (D + V − 2)-blocked matrix (i.e. all
but the lower-right block of size D + V − 2 is zero).

So what does this sparsity argument buy us? We only need to maintain the originalD-banded matrix
K and the (D+ V − 2)2 entries of the block perturbation. These entries can be updated backwards
from t = T, . . . , 1 inO((D+V − 2)3) time per round using block matrix inverses. This means that
the run-time of the entire pre-processing step is linear in T . For updates and prediction we need ct
and bt, which we can compute using Gaussian elimination from R−1t in O(t(D + V )) time. In the
next section we will see a special case in which we can update and predict in constant time.

5 Norm-bounded Data with Increment Squared Regularization

We return to our motivating problem (1) with complexity matrix K = KT given by (2) and norm
constrained data, i.e. vt = et. We show that the Rt matrices are very simple: their inverse is
I + λKt with its lower-right entry perturbed. Using this, we show that the prediction is a linear
combination of the past observations with weights decaying exponentially backward in time. We
derive a constant-time update equation for the minimax prediction and tightly sandwich the regret.

Here, we will calculate a few quantities that will be useful throughout this section. The inverse
(I + λKT )−1 can be computed in closed form as a direct application of the results in [14]:

Lemma 8. Recall that sinh(x) = ex−e−x

2 and cosh(x) = ex+e−x

2 . For any λ ≥ 0:

(I + λKT )−1i,j =
cosh

(
(T + 1− |i− j|)ν

)
− cosh

(
(T + 1− i− j)ν

)
2λ sinh(ν) sinh

(
(T + 1)ν

) ,

where ν = cosh−1
(
1 + 1

2λ

)
.
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We need some control on this inverse. We will use the abbreviations

zt := (I + λKt)
−1et, (8)

ht := eᵀt (I + λKt)
−1et = eᵀt zt, and (9)

h :=
2

1 + 2λ+
√

1 + 4λ
. (10)

We now show that these quantities are easily computable (see Appendix B for proofs).

Lemma 9. Let ν be as in Lemma 8. Then, we can write

ht =
1− (λh)2t

1− (λh)2t+2
h,

and limt→∞ ht = h from below, exponentially fast.

A direct application of block matrix inversion (Lemma 12) results in

Lemma 10. We have

ht =
1

1 + 2λ− λ2ht−1
and zt = ht

(
λzt−1

1

)
.

Intriguingly, following the optimal algorithm for all T rounds can be done in O(Td) computation
and O(d) memory. These resource requirements are surprising as playing weighted averages typi-
cally requires O(T 2d). We found that the weighted averages are similar between rounds and can be
updated cheaply.

We are now ready to state the main result of this section, proved in Appendix B.3.

Theorem 11. Let zt and ht be as in (8) and Kt as in (2). For the minimax problem (1) we have

R−1t = I + λKt + γtete
ᵀ
t

and the minimax prediction in round t is given by

at = λctXt−1zt−1

where γt = 1
ct
− 1

ht
and ct satisfy the recurrence cT = hT and ct−1 = ht−1 + λ2h2t−1ct (1 + ct).

5.1 Implementation

Theorem 11 states that the minimax prediction is at = λctXt−1zt−1. Using Lemma 10, we can
derive an incremental update for at by defining a1 = 0 and

at+1 = λct+1Xtzt = λct+1[Xt−1 xt]ht

(
λzt−1

1

)
= λct+1ht (Xt−1λzt−1 + xt)

= λct+1ht

(
at
ct

+ xt

)
.

This means we can predict in constant time O(d) per round.

5.2 Lower Bound

By Theorem 5, using that wt = 1 so that dt = ct, the minimax regret equals
∑T
t=1 ct. For conve-

nience, we define rt := 1− (λTh)2t (and rT+1 = 1) so that ht = hrt/rt+1. We can obtain a lower
bound on ct from the expression given in Theorem 11 by ignoring the (positive) c2t term to obtain:
ct−1 ≥ ht−1 + λ2Th

2
t−1ct. By unpacking this lower bound recursively, we arrive at

ct ≥ h

T∑
k=t

(λTh)2(k−t)
r2t

rkrk+1
.

7



Since r2t /(riri+1) is a decreasing function in i for every t, we have r2t
riri+1

≥ rt
rt+1

which leads to

T∑
t=1

ct ≥ h
T∑
t=1

T∑
k=t

(λTh)2(k−t)
rt
rt+1

≥ h
∫ T−1

0

∫ T

t+1

(λTh)2(k−t)
rt
rt+1

dkdt = Ω

(
− hT

2 log(λTh)

)
where we have exploited the fact that the integrand is monotonic and concave in k and monotonic
and convex in t to lower bound the sums with an integral. See Claim 14 in the appendix for more
details. Since − log(λTh) = O(1/

√
λT ) and h = Ω(1/λT ), we have that

∑T
t=1 ct = Ω( T√

λT
),

matching the upper bound below.

5.3 Upper Bound

As h ≥ ht, the alternative recursion c′T+1 = 0 and c′t−1 = h + λ2h2c′t(1 + c′t) satisfies c′t ≥ ct.
A simple induction 1 shows that c′t is increasing with decreasing t, and it must hence have a limit.
This limit is a fixed-point of c 7→ h+λ2h2c(1 + c). This results in a quadratic equation, which has
two solutions. Our starting point c′T+1 = 0 lies below the half-way point 1−λ2h2

2λ2h2 > 0, so the sought
limit is the smaller solution:

c =
−λ2h2 + 1−

√
(λ2h2 − 1)2 − 4λ2h3

2λ2h2
.

This is monotonic in h. Plugging in the definition of h, we find

c =

√
4λ+ 1(2λ+ 1) + 4λ+ 1−

√
2
√

2λ
(
λ
(
2
√

4λ+ 1 + 7
)

+ 3
√

4λ+ 1 + 4
)

+
√

4λ+ 1 + 1

4λ2
.

Series expansion around λ→∞ results in c ≤ (1 + λ)−1/2. So all in all, the bound is

R∗ = O
(

T√
1 + λT

)
,

where we have written the explicit T dependence of λ. As discussed in the introduction, allowing
λT to grow with T is natural and necessary for sub-linear regret. If λT were constant, the regret term
and complexity term would grow with T at the same rate, effectively forcing the learner to compete
with sequences that could track the xt sequence arbitrarily well.

6 Discussion

We looked at obtaining the minimax solution to simple tracking/filtering/time series prediction prob-
lems with square loss, square norm regularization and square norm data constraints. We obtained a
computational method to get the minimax result. Surprisingly, the problem turns out to be a mixture
of per-step quadratic minimax problems that can be either concave or convex. These two problems
have different solutions. Since the type of problem that is faced in each round is not a function
of the past data, but only of the regularization, the coefficients of the value-to-go function can still
be computed recursively. However, extending the analysis beyond quadratic loss and constraints is
difficult; the self-dual property of the 2-norm is central to the calculations.

Several open problems arise. The stability of the coefficient recursion is so far elusive. For the case
of norm bounded data, we found that the ct are positive and essentially constant. However, for higher
order smoothness constraints on the data (norm bounded increments, increments of increments,
. . . ) the situation is more intricate. We find negative ct and oscillating ct, both diminishing and
increasing. Understanding the behavior of the minimax regret and algorithm as a function of the
regularization K (so that we can tune λ appropriately) is an intriguing and elusive open problem.

1For the base case, cT+1 = 0 ≤ cT = h. Then c′t−1 = h+λ2h2c′t(1+c
′
t) ≥ h+λ2h2c′t+1(1+c

′
t+1) = c′t.
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A Technical lemmas

Here, we gather the version of block matrix inversion and Sherman Morrison formulas used previ-
ously.

Lemma 12 (Block Matrix Inverse). We have(
A b
bᵀ c

)−1
=

(
A−1 + A−1b(c− bᵀA−1b)−1bᵀA−1 −A−1b(c− bᵀA−1b)−1

−(c− bᵀA−1b)−1bᵀA−1 (c− bᵀA−1b)−1

)
.

Lemma 13 (Sherman-Morrison).

(A + bbᵀ)−1 = A−1 − A−1bbᵀA−1

1 + bᵀA−1b
and (A− bbᵀ)−1 = A−1 +

A−1bbᵀA−1

1− bᵀA−1b
.

B Proofs

Proof of Lemma 9. Recall that

h :=
2

1 + 2λ+
√

1 + 4λ
.

This allows us to write

ht =
cosh

(
(t+ 1)ν

)
− cosh

(
(1− t)ν

)
2λ sinh(ν) sinh

(
(t+ 1)ν

)
=

1−
(

2λ
1+2λ+

√
4λ+1

)2t
√

4λ+ 1 + 2λ2

1+2λ+
√
4λ+1

(
1−

(
2λ

1+2λ+
√
4λ+1

)2t)
=

1− (λh)2t√
4λ+ 1 + λ2h(1− (λh)2t)

.

Verifying that 1/h =
√

4λ+ 1 + λ2h and plugging this in yields

ht =
1− (λh)2t

1− (λh)2t+2
h,

as desired.

Claim 14. We claimed that
T∑
t=1

ct ≥ h

∫ T−1

0

∫ T

t+1

(λh)2(k−t)
1− (λh)2t

1− (λh)2(t+1)
dkdt = O

(
−hT

(λh)2 log(λh)

)
.

Evaluating the integral gives∫ T−1

1

∫ T

t+1

(λh)2(k−t)
1− (λh)2t

1− (λh)2(t+1)
dkdt

= − T

log((λh)2)
+

(λh)2 − log((λh)2)

log2((λh)2)
+

1

log((λh))2

+
(λh)2T + ((λh)2 − 1)(λh)2T ((λh)2T − 1) log((λh)−2 − (λh)2)

(λh)2 log2((λh)2)

− ((λh)2 − 1)(λh)2T − 1) log((λh)−2T+2 − (λh)2)

log2((λh)2)

= − T

2 log(λh)
+ o(1).

10



B.1 Proof of Theorem 2

Proof. First, we consider α ≤ 0. The objective is concave in x so the inner maximum is found
at zero derivative, i.e. at x = a−b

α (it remains to check this is feasible) where the value equals

V ∗ = mina∈Rd ‖a‖2 − ‖a−b‖
2

α . This optimization is convex in a (again owing to the sign of α)
and again minimized at vanishing derivative. That is, a = b

1−α , (back substitution reveals x = b
1−α ,

which is indeed feasible since ‖b‖ ≤ 1 by assumption and we are in the case α ≤ 0). Thus, the
value equals V ∗ = ‖b‖2

1−α , as claimed.

Next, we consider α ≥ 0. The objective is convex in x and must take its maximum on the boundary.
Specifically, it is maximized at the point of the unit sphere maximizing the linear term, i.e. at x =
b−a
‖b−a‖ . Plugging this in, we find value equal to V ∗ = mina∈Rd ‖a‖2 + α + 2‖b − a‖ . This
is a concave function of a, although it is not differentiable due to the square-less norm. Yet it is
minimized where zero is a sub-gradient (the unit ball is sub-gradient to the norm at 0). In our case
this happens at a = b, where we used the assumption that ‖b‖ ≤ 1. We conclude that the value is
V ∗ = ‖b‖2 + α as desired.

B.2 Proof of Theorem 7

Proof. By induction. For the base case notice that RT is the D-banded matrix I + λK. Now
assume that R−1t is a sum of a D-banded matrix and an N -blocked matrix. Naturally D,V ≥ 1
and N ≥ 0. Then b′t is max{D − 1, N − 1}-sparse, and hence b′tb

′
t
ᵀ is max{D − 1, N − 1}-

blocked. Also ut is (V − 1)-sparse, and A′t is D-banded plus (N − 1)-blocked. So A′tut is
max{D + V − 2, N − 1}-sparse. Now A′tutb

′
t
ᵀ is max{N − 1, D + V − 2}-blocked. So R−1t−1 is

D-banded plus max{N − 1, D+ V − 2}-blocked. So if N ≥ D+ V − 2 it remains D-banded plus
N -blocked. (Note that strict inequality is wasteful: after a few pullbacks R−1s will be D-banded
plus (D + V − 2)-blocked).

B.3 Proof of Theorem 11

Proof. By induction. The base case t = T follows by Theorem 1 and noticing that γT = 0. Then

Rt =

(
I + λKt−1 −λet−1
−λeᵀt−1 1 + 2λ+ γt

)−1
=

(
(I + λKt−1)−1 + λ2ctzt−1z

ᵀ
t−1 λctzt−1

λctz
ᵀ
t−1 ct

)
where used that ct = 1

1
ht

+γt
= 1

1+2λ+γt−λ2ht−1
. Now using that ct ≥ 0, Theorem 5 gives optimal

prediction at = λctXt−1zt−1 and the update equation (7) gives Rt−1 = (I + λKt−1)−1 +
λ2ctzt−1z

ᵀ
t−1 +λ2c2tzt−1z

ᵀ
t−1. By Sherman-Morrison (Lemma 13), using that (I +λKt)zt = et,

R−1t−1 = I + λKt−1 −
(
λ2ct + λ2c2t

)
(I + λKt−1)zt−1z

ᵀ
t−1(I + λKt−1)

1 + (λ2ct + λ2c2t ) z
ᵀ
t−1(I + λKt−1)zt−1

= I + λKt−1 −
(
λ2ct + λ2c2t

)
et−1e

ᵀ
t−1

1 + (λ2ct + λ2c2t )ht−1
witnessing the expression for

γt−1 = − λ2ct (1 + ct)

1 + λ2ct (1 + ct)ht−1
.

We finally check, using ht = 1
1+2λ−λ2ht−1

, that

ct−1 =
1

1
ht−1

− λ2ct(1+ct)
1+λ2ct(1+ct)ht−1

= ht−1 + λ2h2t−1ct (1 + ct) .

C Inverse Update Equation

The update equation (7) for Rt is simple, but results in dense matrices Rt, even though Rt−1
t is

sparse. In this section we derive a recursion for R−1t purely in terms of inverses. Let us decompose
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R−1t =

(
A′t b′t
b′t

ᵀ
c′t

)
. Then

At = A′t
−1

+ A′t
−1

b′t(c
′
t − b′t

ᵀ
A′t
−1

b′t)
−1b′t

ᵀ
A′t
−1 (11a)

bt = −A′t
−1

b′t(c
′
t − b′t

ᵀ
A′t
−1

b′t)
−1 (11b)

ct = (c′t − b′t
ᵀ
A′t
−1

b′t)
−1 (11c)

If ct ≥ 0 it follows from (7) that

Rt−1 = A′t
−1

+ [bt ut]

(
1 + 1

ct
−ct

−ct ct(ct − 1)

)
[bt ut]

ᵀ

and hence

R−1t−1 = A′t −A′t[bt ut]

((
1 + 1

ct
−ct

−ct ct(ct − 1)

)−1
+ [bt ut]

ᵀA′t[bt ut]

)−1
[bt ut]

ᵀA′t

= A′t − [−ctb′tA′tut]
((

ct(1− ct) −ct
−ct −(1 + 1

ct
)

)
+ [bt ut]

ᵀA′t[bt ut]

)−1
[−ctb′tA′tut]ᵀ

= A′t −
[−ctb′tA′tut]

(
uᵀ
tA
′
tut − (1 + 1

ct
) ct(b

′
t
ᵀ
ut + 1)

ct(b
′
t
ᵀ
ut + 1) c2t (c′t − 1)

)
[−ctb′tA′tut]ᵀ(

uᵀ
tA
′
tut − (1 + 1

ct
)
)
c2t (c

′
t − 1)− c2t (b′t

ᵀut + 1)2

= A′t −
[b′tA

′
tut]

(
uᵀ
tA
′
tut − (1 + 1

ct
) −b′t

ᵀ
ut − 1

−b′t
ᵀ
ut − 1 c′t − 1

)
[b′tA

′
tut]

ᵀ(
uᵀ
tA
′
tut − (1 + 1

ct
)
)

(c′t − 1)− (b′t
ᵀut + 1)2

Which expands to

R−1t−1 = A′t −

(
uᵀ
tA
′
tut − (1 + 1

ct
)
)
b′tb
′
t
ᵀ

Z

+
(b′t

ᵀ
ut + 1)(b′tu

ᵀ
tA
′
t + A′tutb

′
t
ᵀ
)

Z
− (c′t − 1)A′tutu

ᵀ
tA
′
t

Z

where we abbreviated Z =
(
uᵀ
tA
′
tut − (1 + 1

ct
)
)

(c′t − 1)− (b′t
ᵀ
ut + 1)2. On the other hand for

ct ≤ 0 we find

R−1t−1 =

(
A′t
−1

+
btb

ᵀ
t

ct
+

btb
ᵀ
t

1− ct

)−1
= A′t +

b′tb
′
t
ᵀ

1− c′t
.

C.1 The ct

In Figure 2 we graph the ct, which are crucial in determining the regret, for 4×3 natural choices the
regularization matrix K and the data constraints vt. We consider minor variations of the standard
second-order regularization (2), where we choose to regularize either end-point down to zero. We
consider first order vt = et, second order v = et − et−1 and third order vt = et − 2et−1 + et−2
data constraints. We see that the first two never hit negative ct, whereas the third option consistently
runs into them.
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(a) Norm of data vt = et
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(b) Norm of increments v = et − et−1
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(c) Norm of increments of increments vt = et − 2et−1 + et−2

Figure 2: Graphs of the ct as a function of t for T = λ = 128 under the assumption that the data
are norm bounded (a), increment bounded (b) and increments of increments bounded (c). Note the
logarithmic scale on the first two plots and the linear scale on the last plot, where the ct go negative.
Each plot shows four lines, one for each possibility of regularizing the comparator down to zero at
either end-point.
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