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WOUTER M. KOOLEN ALAN MALEK PETER BARTLETT

ONLINE PREDICTION

1

1

2

2

3 3
∗ 1

1

2

2
3 3
∗

SQUARE LOSS GAMES
Fix a convex set C, positive definite matrix W , length T .
For each round t = 1, . . . , T ,

• We play at ∈ C
• Nature reveals xt ∈ C
• We incur loss

`(at,xt) := ‖at − xt‖2W

matrix W weights prediction errors

= (at − xt)
ᵀW−1(at − xt)

Our goal is to minimize regret w.r.t. best fixed action a in hindsight

Regret :=

T∑
t=1

`(at,xt)−min
a

T∑
t=1

`(a,xt)

MINIMAX REGRET
If we assume a perfect adversary, how well can we do?

V := min
a1

max
x1

. . .min
aT

max
xT

Regret

We play to minimize the worst-case regret. We can solve for the
value-to-go V in any history using the recurrence:

V (x1, . . . ,xT ) := −min
a

T∑
t=1

`(a,xt) (1)

V (x1, . . . ,xt−1) := min
at

max
xt

`(at,xt) + V (x1, . . . ,xt) (2)

The minimax regret V equals value-to-go V (ε) from empty history.
To play the minimax strategy: after seeing x1, . . . ,xt−1,

• Compute V (x1, . . . ,xt)

• Choose at as the minimizer of Equation (2)

Problem: this is expensive. Are there examples where V is a simple
function of some statistics of x1, . . . ,xt that is simple to precompute?

SOLVING THE GAMES

Using sufficient statistics s =
∑t
τ=1 xτ and σ2 =

∑t
τ=1 x

ᵀ
τW

−1xτ ,

Theorem 1 (Brier Game) Let C = 4. For W satisfying an alignment
condition, the value-to-go is

αααts
ᵀW−1s− σ2 + (1− tαααt) diag(W−1)ᵀs+ const,

and the minimax and maximin strategies for round t+ 1 are given by

a∗ = p∗ =
s

t
tαααt+1 + c(1− tαααt+1)

which is data mean s
t shrunk towards center c.
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Theorem 2 (Ball Game) Let C = ©. For any positive definite W the
value-to-go is

sᵀAts− σ2 + const.

For round t+ 1, the minimax strategy plays

a∗ =
(
λmaxI − (At+1 −W−1)

)−1
At+1s

and the maximin strategy plays two unit length vectors with

Pr

(
x = a⊥ ±

√
1− aᵀ

⊥a⊥vmax

)
=

1

2
±

aᵀ
‖vmax

2
√
1− aᵀ

⊥a⊥
,

where λmax and vmax correspond to the largest eigenvalue of At+1 and a⊥
and a‖ are the components of a∗ perpendicular and parallel to vmax.

All coefficients (αααt, At) are efficiently precomputable!

QUADRATIC

LINEAR

REGRET BOUNDS

• RegretBrier ∝
∑T
t=1 αααt.

• RegretBall = λmax(W
−1)

∑T
t=1 αααt.

• [1] show that
∑T
t=1 αααt = O(log(T )− log log(T )).

• Compare with O(log(T )) of Follow the Leader.

[1] E. Takimoto, M. Warmuth The minimax strategy for Gaussian density estimation
In COLT ’00

COEFFICIENT RECURSIONS

Brier Game: αααT = 1
T and

αααt = ααα2
t+1 + αααt+1.

Ball Game: AT = 1
TW

−1 and

At = At+1

(
W−1 + λmaxI −At+1

)−1
At+1 +At+1,

which maintains the eigenvectors of W and updates the eigenvalues.

CONCLUSION
• Both games have tractable value functions and optimal strategies.

• All coefficients can be precomputed (need to know horizon T ).

• Our strategies are subgame perfect: we are minimax optimal from every history.

• FOLLOW-UP We now know the minimax strategy for arbitrary outcome space C.


