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Markov Decision Processes

A Markov Decision Process is specified by:
State space X = {1, . . . ,X}
Action space A = {1 . . . ,A}
Transition Kernel P : X ×A → ∆X

Loss function ` : X ×A → [0,1]

Let Pπ be the state transition kernel under policy π : X → ∆A.
Our goal is to choose π to minimize the average loss when X and A
are very large.
Aim for optimality within a restricted family of policies.
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Linear Program Formulation
LP formulation (Manne 1960):

max
λ,h

λ , (1)

s.t. B>(λ1 + h) ≤ `+ P>h ,

where B ∈ {0,1}(X×XA) is the marginalization matrix.
Primal variables: h is the cost-to-go, λ is the average cost
Dual:

min
µ∈RXA

`>µ , (2)

vs.t. 1>µ = 1, µ ≥ 0, (P − B)µ = 0 .

Define policy via π(a|x) ∝ µ(x ,a).
Dual variables: µ is a stationary distribution over X ×A
Still a problem when X , A very large
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The Dual ALP

Feature matrix Φ ∈ RXA×d ; constrain µ = Φθ

min
µ∈RXA

`>Φθ , (3)

s.t. 1>Φθ = 1, Φθ ≥ 0, (P − B)>Φθ = 0 .

[·]+ is positive part
Define policy via πθ(a|x) ∝ [(Φθ)(x ,a)]+,
µθ is the stationary distribution of Pπθ

µθ ≈ Φθ

`>µθ is the average loss of policy πθ
Want to compete with minθ `>µθ
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Reducing Constraints

Still intractable: d-dimensional problem but O(XA) constraints
Form the convex cost function:

c(θ) = `>Φθ + ‖[Φθ]−‖1 +
∥∥∥(P − B)>Φθ

∥∥∥
1

= `>Φθ +
∑
(x ,a)

∣∣[Φ(x ,a),:θ]−
∣∣+
∑
x ′

∣∣∣(Φθ)>(P − B):,x ′
∣∣∣

Sample (xt ,at ) ∼ q1 and yt ∼ q2

Unbiased subgradient estimate:

gt (θ) =`>Φ−
Φ(xt ,at ),:

q1(xt ,at )
I{Φ(xt ,at ),:θ<0} (4)

+
(Φ>(P − B):,yt )

>

q2(yt )
sgn
(

(Φθ)>(P − B):,yt

)
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The Stochastic Subgradient Method for MDPs

Input: Constants S,H > 0, number of rounds T .
Let ΠΘ be the Euclidean projection onto S-radius 2-norm
ball.
Initialize θ1 ∝ 1.
for t := 1,2, . . . ,T do

Sample (xt ,at ) ∼ q1 and x ′t ∼ q2.
Compute subgradient estimate gt
Update θt+1 = ΠΘ(θt − ηtgt ).

end for
θ̂T = 1

T
∑T

t=1 θt .
Return policy π

θ̂T
.
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Theorem

Given some ε > 0, the θ̂T produced by the stochastic subgradient
method after T = 1/ε4 steps satisfies

`>µ
θ̂T
≤ min

θ∈Θ

(
`>µθ +

V (θ)

ε
+ O(ε)

)
with probability at least 1− δ, where V = O(V1 + V2) is a violation
function defined by

V1(θ) = ‖[Φθ]−‖1
V2(θ) =

∥∥∥(P − B)>Φθ
∥∥∥

1
.

The big-O notation hides polynomials in S, d, C1, C2, and log(1/δ).
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Comparison with previous techniques

We bound performance of found policy directly (not through J)
Previous bounds were of the form infθ ‖J∗ −Ψθ‖
Our bounds: performance w.r.t. best in class w.o. near optimality
of class
No knowledge of optimal policy assumed
First method to make approximations in the dual

Y. Abbasi-Yadkori, P. Bartlett, A. Malek Linear Programming for Large-Scale Markov Decision Problems 9 / 22



Discussion

Can remove the awkward V (θ)/ε+ O(ε) by taking a grid of ε
Recall

C1 = max
(x ,a)∈X×A

∥∥Φ(x ,a),:

∥∥
q1(x ,a)

, C2 = max
x∈X

∥∥(P − B)>:,x Φ
∥∥

q2(x)

We also pick Φ and q1, so we can make C1 small
Making C2 may require knowledge of P (such as sparsity or some
stability assumption)
Natural selection: state aggregation
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Comparison with Constraint Sampling

Use the constraint sampling of (de Farias and Van Roy, 2004)
Must assume feasibility
Need a vector v(x) ≥ |(P − B)>Φθ| as envelope to constraint
violations
Bound includes ||v(x)||1; could be very large
Requires specific knowledge about problem
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Analysis

Assume fast mixing: for every policy π, ∃τ(π) > 0 s.t. ∀d ,d ′ ∈ 4X ,∥∥dPπ − d ′Pπ
∥∥

1 ≤ e−1/τ(π)
∥∥d − d ′

∥∥
1

Define

C1 = max
(x ,a)∈X×A

∥∥Φ(x ,a),:

∥∥
q1(x ,a)

, C2 = max
x∈X

∥∥(P − B)>:,x Φ
∥∥

q2(x)
.

The proof has three main parts
1 V1(θ) ≤ ε1 and V2(θ) ≤ ε2 ⇒ ‖µθ − Φθ‖1 ≤ O(ε1 + ε2)
2 Bounding gradient of c(θ); checking it is unbiased
3 Applying stochastic gradient descent theorem:
`>Φθ̂ ≤ minθ∈Θ c(θ) + O(ε)
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Proof part 1

Lemma

Let u ∈ RXA be a vector with

1>u = 1, ‖u‖ ≤ 1 + ε1,
∥∥∥u>(P − B)

∥∥∥
1
≤ ε2

For the stationary distribution µu of policy u+ = [u]+/ ‖[u]+‖1, we have

‖µu − u‖1 ≤ τ(µu) log(1/ε′)(2ε′ + ε′′) + 3ε′ .

Proof:
Two bounds give

∥∥(P − B)>u+
∥∥

1 ≤ 2ε1 + ε2 := ε′

Also, ‖u+ − u‖1 ≤ 2ε1
Define Mu+ ∈ RX×XA as the matrix that encodes policy u+, e.g.
Mu+

P = Pu+
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Proof (continued):
Let µ0 = u+, µ>t = µ>t−1PMu+

, vt = µ>t (P − B) = vt−1Mu+
P

µt is the state-action distribution after running the policy for t steps
By previous bound, ‖v0‖1 ≤ ε′ ⇒ ‖vt‖1 ≤ ε′

µ>t = µ>t−1PMu+
= (µ>t−1B + vt−1)Mu+

= µ>t−1 + vt−1Mu+

Telescoping: µ>k = µ>0 +
∑k

t=0 vtMu+

Thus, ‖µk − u+‖1 ≤ kε

By mixing assumption: ‖µk − µu‖1 ≤ e−1/τ(u+)

Take k = τ(u+) log(1/ε′) and use triangle inequality
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Applying SGD theorem

Theorem (Lemma 3.1 of (Flaxman et al., 2005))

Assume we have
Convex set Z ⊆ B2(Z ,0) and (ft )t=1,2,...,T convex functions on Z.
Gradient estimates f ′t with E [[] f ′t |zt ] = ∇f (zt ) and bound ‖f ′t ‖2 ≤ F
Sample Path z1 = 0 and zt+1 = ΠZ(zt − ηf ′t ) (ΠZ Euclidean
projection)

Then, for η = Z/(F
√

T ) and any δ ∈ (0,1), the following holds with
probability at least 1− δ:

T∑
t=1

ft (zt )−min
z∈Z

T∑
t=1

ft (z) ≤ ZF
√

T (5)

+

√
(1 + 4Z 2T )

(
2 log

1
δ

+ d log
(

1 +
Z 2T

d

))
.
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checking conditions of theorem

Recall gradient: for (xt ,at ) ∼ q1 and yt ∼ q2,

gt (θ) =`>Φ− H
Φ(xt ,at ),:

q1(xt ,at )
I{Φ(xt ,at ),:θ<0}

+ H
(P − B)>:,yt

Φ

q2(yt )
sgn
(

(Φθ)>(P − B):,yt

)
.

We can bound

‖gt (θ)‖2 ≤
∥∥∥`>Φ

∥∥∥
2

+ H

∥∥Φ(xt ,at ),:

∥∥
2

q1(xt ,at )
+

∥∥(P − B)>:,yt
Φ
∥∥

2
q2(yt )

≤
√

d + H(C1 + C2) := F .

and E [[] gt (θ)] = ∇c(θ).
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proof conclusion

The SGD theorem gives us:

`>Φθ̂T + H(V1(θ̂) + V2(θ̂)) ≤ `>Φθ∗ ≤H(V1(θ∗) + V2(θ∗)) + bT

where bT is the regret bound from the theorem:

bT =
SF√

T
+

√
1 + 4S2T

T 2

(
2 log(

1
δ

) + d log(
d + S2T

d
)

)
.

We take

V1(θ̂),V2(θ̂) ≤ 1
H

(2(1 + S) + HV1(θ∗) + HV2(θ∗) + bT ) := ε′
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Applying the lemma twice:

`>µ
θ̂T
− `>µθ∗ ≤HV1(θ∗) + HV2(θ∗) + bT + τ(µ

θ̂
) log(1/ε′)3ε′ + 3ε′

+ τ(µθ∗) log(1/V (θ∗))(2V1(θ∗) + V2(θ∗)) + 3V1(θ)

Since bT = O(H/
√

T , taking H = 1/ε and T = 1/ε4 yields:

`>µ
θ̂T
− `>µθ∗ ≤

1
ε

(V1(θ∗) + V1(θ∗)) + O(ε).
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Queueing network example (Rybko-Stolyar)

µ1 µ2

µ3µ4

d1a1

d3 a3

d2

d4

server1 server2

Customers arrive at µ1/µ3 then move to µ2/µ4

Server 1 processes µ1 or µ4, server 2 processes µ2 or µ3

Features: indicators of sub-blocks in state-action space, stationary
distribution of LONGER and LBSF heuristics
Loss is the total queue size
a1 = a3 = .08, d1 = d2 = .12, and d3 = d4 = .28, X = 902500
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Results
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The left plot: linear objective of the running average, i.e. `>Φθ̂t .
The center plot: sum of the two constraint violations of θ̂t

The right plot: `>µ
θ̂t

. The two horizontal lines correspond to the
loss of two heuristics, LONGER and LBFS.
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Conclusion

Presented an algorithm to solve average-cost large-scale MDPs
I Restricted the dual LP to a subspace to reduce dimension
I Used Stochastic Gradient Descent to sample constraints

Presented oracle inequality guaranteeing we perform well w.r.t.
best policy in the subspace.
Demonstrated algorithm on a queueing network
Visit us at poster T75
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