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Conclusion

Problem: MDP planning problem with large state space
Goal: find near-optimal policy in low dimensional family of policies
Novel framework for linearly solvable MDPs
Also: Algorithm with complexity that scales with dimension of
family
First theoretical bounds for approximate solutions in linearly
solvable MDPs
Demonstrate on pratical example
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Previous work

Approximate Dynamic Programming (linear approximation of the
value function): [Sutton and Barto, 1998, Bertsekas, 2007]

Approximate Linear Programming: (approximately solving LP)
[Schweitzer and Seidmann, 1985, de Farias and Van Roy, 2003, 2004, 2006, Hauskrecht

and Kveton, 2003, Guestrin et al., 2004, Petrik and Zilberstein, 2009, Desai et al., 2012,

Veatch, 2013].

Solving LMDPs (with no theoretical guarantees):
[Todorov, 2009] and [Zhong and Todorov, 2011a,b]
Approximate policy iteration (e.g. least squares policy iteration)
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Large Scale MDPs

Markov decision process: modeling sequential decisions
E.g. queueing network, robot planning
Can solve for small state spaces
Applications have large state spaces
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Notation

A Markov Decision Process is specified by:
State space X = {1, . . . ,X}
Action space A
Transition Kernel K : X ×A → 4X
Loss function ` : X ×A → R+

Problem:
Policy π : X → 4A
Find policy to minimize value function

Jπ(x) = E

[ ∞∑
t=0

`(X t , π)

∣∣∣∣∣X 0 = x

]

Aim for optimality within a restricted family of policies.
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Large state space

Parametric class of value functions Jθ for θ ∈ Θ ⊂ Rd

Bellman operator:

(LJ)(x) = min
a∈A

{
`(x ,a) + Ex ′∼P0(x ,a)J(x ′)

}
Optimal policy J∗ is a fixed point: LJ∗ = J∗

Greedy policy: πJθ
(the argmin)

Ultimate goal: find a θ to minimize

JπJθ
,

the actual value of the greedy policy of the approximate optimal
value
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Approximate solutions

Consider the unconstrained surrogate

min
θ

c>Jθ + ‖LJθ − Jθ‖

Can we solve this with algorithms that scale with d but not X?
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KL-cost

Introduced in [Todorov, 2006]
A = 4X
Loss: `(x ,P) = q(x) + DKL(P||P0(·|x))

I state loss q(x), base dynamics P0
I infinite loss unless P � P0

Terminal state z
Total cost of policy P

JP(x) = E

[ ∞∑
t=0

`(X t ,P)

∣∣∣∣∣X 0 = x

]
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Linearly Solvable

Greedy action is:

PJ (·|x) = arg min
P∈4X

Ey∼P(·|x)[q(y) + JP(y)] ∝ P0(·|x)e−JP(·)

Bellman’s operator becomes linear in g(x) = e−J(x):

e−LJ(x) = e−q(x)
∑
x ′

P0(x , x ′)e−J(x ′)

Bellman’s optimality equation:

LJ = J ⇔ e−qP0e−J = e−J
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Parameterizing J θ

Previous ADP techniques used Jθ = Ψθ

Intuition: take Jθ = − log(Ψθ) so e−LJθ is linear in θ
Surrogate optimization:

min
θ

c>Jθ + ‖LJθ − Jθ‖︸ ︷︷ ︸
Bellman error

(1)

‖LJθ − Jθ‖ not convex in θ, but

e−max{LJθ,Jθ} ‖LJθ − Jθ‖ ≤
∥∥e−LJθ − e−Jθ

∥∥
Plugging Ψθ = e−Jθ into (1):

min
θ
−c> log(Ψθ) + ||e−qP0Ψθ

︸ ︷︷ ︸
Bellman
operator

−Ψθ||
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Our algorithm

Recall relaxed optimization:

min
θ
−c> log(Ψθ) +

∥∥e−qP0Ψθ −Ψθ
∥∥

Q

Let T be the set of trajectories with x1 ∼ c with distribution Q(·)
Optimization is equal to:

min
θ
−c> log(Ψθ) +

∑
T∈T

Q(T )
∑
x∈T

∣∣∣e−q(x)P0Ψθ(x)−Ψθ(x)
∣∣∣

Use stochastic gradient descent by sampling trajectories
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Theorem

Let θ̂ be an ε-optimal solution returned by SGD. Then,

JPJ
θ̂

(x1) ≤ inf
θ∈Θ

{
JPJθ

(x1) + E(Jθ)
}

+ ε

+
∥∥∥PJ

θ̂
−Q

∥∥∥
1︸ ︷︷ ︸

Off-policy error

max
T∈T

∑
x∈T

∣∣J
θ̂
(x)−LJ

θ̂
(x)
∣∣

Penalty function:

E(Jθ) =
∑
T∈T

∑
x∈T

(
Q(T )e−min(Jθ,LJθ) + PJθ

(T )
)
|Jθ(x)−LJθ(x)|︸ ︷︷ ︸

Small if Jθ is
close to the

optimal value
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Crowdsourcing

Need to label A items.
Each item has soft label µi ∈ [0,1]

Guess if µi ≥ 1
2 for as many i as we can

For t = 1, . . . ,T :
I Pick i ∈ {1, . . . ,A}
I Receive X t ∼ Bern(µi )

Use Beta prior⇒ MDP dynamics equivalent to Bayesian updates
P0 limits transitions
q(x) rewards correct labels
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Conclusion

Novel framework for low dimensional policies for linearly solvable
MDPs
Algorithm for policy optimization with complexity that scales with
dimension of subspace
First theoretical bounds for approximate linearly solvable MDP
solutions
Demonstrate on pratical example
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Thanks!
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Proof outline of main theorem

∣∣∣JPJθ∗
(x1)− Jθ∗(x1)

∣∣∣ = O (‖LJθ∗ − Jθ∗‖)

Similarly bounding
∣∣∣JP

J θ̂
(x1)− J

θ̂
(x1)

∣∣∣ = O
(∥∥LJ

θ̂
− J

θ̂

∥∥)
Jθ∗ and J

θ̂
are close by the optimization
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