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Conclusion

@ Problem: MDP planning problem with large state space
@ Goal: find near-optimal policy in low dimensional family of policies
@ Novel framework for linearly solvable MDPs

@ Also: Algorithm with complexity that scales with dimension of
family

@ First theoretical bounds for approximate solutions in linearly
solvable MDPs

@ Demonstrate on pratical example
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Previous work

@ Approximate Dynamic Programming (linear approximation of the
value function): [Sutton and Barto, 1998, Bertsekas, 2007]

@ Approximate Linear Programming: (approximately solving LP)
[Schweitzer and Seidmann, 1985, de Farias and Van Roy, 2003, 2004, 2006, Hauskrecht
and Kveton, 2003, Guestrin et al., 2004, Petrik and Zilberstein, 2009, Desai et al., 2012,
Veatch, 2013].

@ Solving LMDPs (with no theoretical guarantees):
[Todorov, 2009] and [Zhong and Todorov, 2011a,b]

@ Approximate policy iteration (e.g. least squares policy iteration)
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@ Motivation
e Linearly Solvable MDPs
© Extending to large dimensions

e Experiments
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Large Scale MDPs

@ Markov decision process: modeling sequential decisions
@ E.g. queueing network, robot planning

@ Can solve for small state spaces

@ Applications have large state spaces
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Notation

A Markov Decision Process is specified by:

@ State space X ={1,..., X}

@ Action space A

@ Transition Kernel K : X x A — Ay

@ Loss function /: X x A — R™
Problem:

@ Policy m: X — A4

@ Find policy to minimize value function

Z K(Xfa 7T)
t=0

Aim for optimality within a restricted family of policies.

J(x)=E

XoZX]
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Large state space

@ Parametric class of value functions J, for § € © c R?
@ Bellman operator:

(L)) = min {£(x,8) + Eypya) ()}

@ Optimal policy J* is a fixed point: LJ* = J*
@ Greedy policy: 7z, (the argmin)
@ Ultimate goal: find a ¢ to minimize

J

TIy?

the actual value of the greedy policy of the approximate optimal
value
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Approximate solutions

@ Consider the unconstrained surrogate

min c'Jg+ LTy — o

@ Can we solve this with algorithms that scale with d but not X?
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@ Linearly Solvable MDPs
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KL-cost

@ Introduced in [Todorov, 2006]

e A=Ay

@ Loss: {(x, P) = q(x) + Dkc(PI|Po(:|x))
» state loss q(x), base dynamics P,
» infinite loss unless P < Py

@ Terminal state z
@ Total cost of policy P

oo

Jp(x)=E [Z (X, P)

t=0

X0=X]
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Linearly Solvable

@ Greedy action is:

PJ(-’X) =arg min ]E}’NP('P() [q(y) + JP(Y)] o Po("X)e_JP(’)
Pely

@ Bellman’s operator becomes linear in g(x) = e~7/(*):

e—LJ(X) — e—q(X) Z P()(X,X/)G_J(X/)

X/
@ Bellman’s optimality equation:

LI=J=e 9P’ =’
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© Extending to large dimensions
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Parameterizing Jy

@ Previous ADP techniques used Jy = Vi
@ Intuition: take Jy = —log(W#) so e~ “J¢ is linear in 0
@ Surrogate optimization:

minc'Jy+ || LJg — Jy|| (1)
0 ————

Bellman error

@ |[LJy — Jy|| not convex in 0, but
e maX{LJg,Jg} ||LJ9 _ J@H S ||e—LJ9 _ e—JGH
@ Plugging Vo = e=7% into (1):

min —c"log(Wwo) + || e TPywo — Wil
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% ~—

Bellman
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Our algorithm

@ Recall relaxed optimization:
min —clog(Ve) + ||e TPwo — o) 4

@ Let 7 be the set of trajectories with x1 ~ ¢ with distribution Q(-)
@ Optimization is equal to:

min—c log(w0) + Y Q(T) Y ‘e*C’(X)Po\IJQ(x) - we(x))

TET xXeT

@ Use stochastic gradient descent by sampling trajectories
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Theorem

Let ) be an e-optimal solution returned by SGD. Then,
Tp, (x1) < jnf {Tpy, (1) +ET0) | +e

+|Pr; = @, max 3 17500 — L300
—_——— XeT

Off-policy error

Penalty function:

E(Jg) _ Z Z (Q(T)e— min(Jg,LJg) + PJQ(T)) |J9(X) — LJ@(X)l
TeT xeT SmalﬁfrJg is

close to the
optimal value
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° Experiments
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Crowdsourcing

Need to label A items.
Each item has soft label p; € [0, 1]

Guess if pj > % for as many / as we can
Fort=1,...,T:

» Pickie {1,...,A}

» Receive X; ~ Bern(y)

Use Beta prior = MDP dynamics equivalent to Bayesian updates
Py limits transitions
@ g(x) rewards correct labels
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55 Subgradient
- = = =random Opt-KG
uniform

posterior classification error

L ——B=25A
0,035 [ - = =B=72A
B=9.1A

normalized budget for data instances

0 01 02 03 04 05 06 07 08 09
soft label

@ Average error of three
policies

@ Our method requires 10%
fewer samples for same
accuracy

@ Portion of budget vs. soft label

@ Harder soft labels receive
more budget

@ Larger difference as B grows
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Conclusion

@ Novel framework for low dimensional policies for linearly solvable
MDPs

@ Algorithm for policy optimization with complexity that scales with
dimension of subspace

@ First theoretical bounds for approximate linearly solvable MDP
solutions

@ Demonstrate on pratical example
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Proof outline of main theorem

o [Jp,,. (x1) = Ty (x1)| = Oy = Tpel)

@ Similarly bounding ‘Jp (x1) = J5(x1) ‘_ ([ 2Jd5 = J5]))
@ Jy- and J; are close by the optimization
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