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MOTIVATION
• Markov decision process: modeling sequential decisions
• E.g. queueing network, robot planning
• Dynamic Programming can solve for small state problems
• Applications can have large state spaces
• Here: in the KL-cost setting, can efficiently do large state spaces

NOTATION
An MDP is defined by:

• State space X = {1, . . . , X}
• Action space A
• Transition Kernel K : X ×A → 4X
• Loss function ` : X ×A → [0, 1]

The problem is to:

• Policy π : A → 4A
• Find policy to minimize

Jπ(x) = E

[ ∞∑
t=0

`(Xt, π)|X0 = x

]

Aim for optimality within a restricted family of policies.

EXTENDING TO LARGE STATE SPACES
• Parametric class of policies πθ for θ ∈ Θ with losses Jθ
• Bellman operator:

(LJθ)(x) = min
a∈A

(
`(x, a) + EK(x,a)[Jθ(x

′)|x]
)

• Optimal policy has LJθ = Jθ.
• Linear Programming formulation:

min
θ
c>Jθ , (low cost)

s.t. LJθ ≤ Jθ (Jθ is feasible)

• Look for efficient relaxations, e.g.

min
θ
c>Jθ + ‖LJθ − Jθ‖

• Previous ADP techniques used Jθ = Ψθ

LINEARLY SOLVABLE MDPS FROM [TODOROV, 2006]
• A = 4X
• Loss: `(x, P (·|x)) = q(x) +DKL(P (·|x)||P0(·|x))

– state loss q(x), base dynamics P0

– infinite loss unless P � P0

• Terminal state z: q(z) = 0 and P0(z|z) = 1

• Total cost of policy P

JP (x) = E

[ ∞∑
t=0

`(Xt, P )|X0 = x

]

• Greedy action is:

PJ (·|x) = arg min
p∈4X

Jp(x) ∝ 1

Z(x)
P0(x′|x)e−JP (x′)

• Bellman’s operator becomes linear in g(x) = e−J(x):

eLJ(x) = eq(x)
∑
x′

P0(x, x′)e−J(x′)

LARGE STATE SPACES FOR LMDPS

• Intuition: take Jθ = − log(Ψθ) so eLJθ is linear in θ
• Approximate unconstrained optimization:

min
θ
c>Jθ +H ‖LJθ − Jθ‖

• ‖LJθ − Jθ‖ not convex in θ, but

e−max{LJθ,Jθ} ‖LJθ − Jθ‖ ≤
∥∥e−LJθ − e−Jθ

∥∥
• Optimization relaxed to:

min
θ
−c> log(Ψθ) +H

∥∥e−qP0Ψθ −Ψθ
∥∥

OUR ALGORITHM FOR TOTAL COST
Input: x1, N , H , step sizes (ηt), v.
Initialize θ1 = 0.
for t := 1, 2, . . . , N do

Sample trajectory (x1, a1, . . . , z) ∼ v.
Compute the stochastic subgradient rt.
Update θt+1 = ΠW(θt − ηtrt).

end for
θ̂T = 1

T

∑T
t=1 θt.

Return policy PJ
θ̂T

PERFORMANCE BOUND

Theorem 1. Choose H ≥ e‖q‖+log‖1/Ψ‖. Let θ̂ be an ε-optimal solution.
Then, for any θ ∈ Θ with lθ = min(Jθ,LJθ),

JPJ
θ̂
(x1) ≤ inf

Jθ∈J

{
JPJθ

(x1) + E(Jθ)
}

+ ε

+
∥∥PJ

θ̂
−Q

∥∥
1

max
T∈T

∑
x∈T

∣∣J θ̂(x)−LJ θ̂(x)
∣∣

The penalty function

E(Jθ) =
∑
T∈T

∑
x∈T

(
HQ(T )e−lθ(x) + PJθ (T )

)
|Jθ(x)−LJθ(x)|

is related to how far Jθ is from the optimal value function.

CROWDSOURCING
• Need to label A items.
• Each item has soft label µi ∈ [0, 1]

• Guess if {µi ≥ 1
2} for as many i as we can

• For t = 1, . . . , T :

– Pick i ∈ {1, . . . , A}
– Recieve Xt ∼ Bern(µi)

• Use Beta prior ⇒ MDP dynamics equivalent to Bayesian up-
dates
• P0 limits transitions,
• q(x) rewards correct labels

EXPERIMENTAL RESULTS
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