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MOTIVATION

Markov decision process: modeling sequential decisions

E.g. queueing network, robot planning

Dynamic Programming can solve for small state problems
Applications can have large state spaces

Here: in the KL-cost setting, can efficiently do large state spaces

NOTATION
An MDP is defined by:

State space X = {1,..., X}

Action space A

Transition Kernel K : X x A — Ay
Loss function 7 : X x A — [0, 1]

The problem is to:

e Policym: A —= A
e Find policy to minimize

N Zg(XtﬂTﬂXo =X

| t=0

Aim for optimality within a restricted family of policies.

EXTENDING TO LARGE STATE SPACES

e Parametric class of policies 7y for ) € © with losses Jg
e Bellman operator:

(LJg)(r) = 2%12 (U(x,a) + Ex o) Jo(z")|x])

e Optimal policy has LJy = Jy.
e Linear Programming formulation:
m@in c'Jy, (low cost)

s.t. Jo < Jg (J ¢ is feasible)

e [ ook for efficient relaxations, e.g.

m@incTJg + || LJy — Jo]|

e Previous ADP techniques used Jy = V0
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LINEARLY SOLVABLE MDPS FROM [ TODOROV
o /= AX
o Loss: {(x, P(-|7)) = q(x) + Dg r(P(:|x)||Po(-|x))
— state loss ¢(x), base dynamics F

— infinite loss unless P < F,

Terminal state z: q(z) = 0 and Py(z|z) =1
Total cost of policy P

Jp(x) =E|» (X, P)|Xo=u
| t=0

Greedy action is:

Pjy(-|r) =argmin J,(x) Py(2'|2)e= TP ()

PEA x

Z(x)
Bellman’s operator becomes linear in g(z) = e~/ ()

LI = 1) 7 Py (1,0 )e I )

LARGE STATE SPACES FOR LMDPS

o Intuition: take Jy = — log(¥0) so e””/* is linear in 0
e Approximate unconstrained optimization:

m@incTJg —|-H|| J o —J@H

o ||LJy— Jy| not convexin 0, but

e—maa?{ Jo,Jo} H Jy — JQH < ||€— Jo

||

e Optimization relaxed to:

m@in —c' log(V0) + H le"9PyWl — Wo||

OUR ALGORITHM FOR TOTAL COST

Input: =1, N, H, step sizes (1;), v.

Initialize 61 = 0.

fort:=1,2,..., N do
Sample trajectory (z1,a1,...,2) ~ v.
Compute the stochastic subgradient 7.
Update Ht_|_1 = HW(Qt — 77t7°t).

end for

O = % Zle Ot

Return policy P T
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PERFORMANCE BOUND

Theorem 1. Choose H > ellal+1oglll/¥ll [ ot 0 be an e-optimal solution.
Then, for any 6 € © with lg = min(Jy, LJy),

JPJ@ (xl) S Ji@Iéfj {JPJQ ($1) + E(Jg)} + €

+1Pr; = Q] 5213%26; | T5(x) = Ldg(2)]

The penalty function

(o) =3 3 (HQUT)E ) + Py, (1)) | T5(x) — LTy (x)

TeT xe€T

is related to how far Jy is from the optimal value function.

CROWDSOURCING

Need to label A items.
Each item has soft label p; € |0, 1]

Guess if {u; > 5} for as many 7 as we can
Fort=1,...,1"

- Picki e {1,..., A}
— Recieve X; ~ Bern(y;)

Use Beta prior = MDP dynamics equivalent to Bayesian up-
dates

Py limits transitions,
q(x) rewards correct labels

Subgradient
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B soft label

Average error of three poli- Portion of budget vs. soft la-
cies. Our method requires 10%  bel. Harder soft labels receive
fewer samples for same accu-  more budget, and the difference
racy grows with B.
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