Sequential decision making: modeling how we interact with the world

Alan Malek

April 9th, 2016
- Omer Atun: CEO of AgilOne Predictive Marketing
- Brienne Ghafouriar: CEO of Entefy
- Jeffrey Rothschild: founder Veritas Software and Mpath Interactive, Facebook VP of Infrastructure Software
- Omer Atun: CEO of AgilOne Predictive Marketing
- Brienne Ghafouriar: CEO of Entefy
- Jeffrey Rothschild: founder Veritas Software and Mpath Interactive, Facebook VP of Infrastructure Software
- Alan Malek: Graduate student
- Omer Atun: CEO of AgilOne Predictive Marketing
- Brienne Ghafouriar: CEO of Entefy
- Jeffrey Rothschild: founder Veritas Software and Mpath Interactive, Facebook VP of Infrastructure Software
- Alan Malek: Graduate student, Harker alumnus ’05
Goals of this talk

- What is Grad school?
- Modern sequential decision making problems
- Whet your appetite with a cool problem
- Some advice: is grad school for you?
What is a Grad school?

- A third the pay for a third the responsibilities
- Take classes for a few years
- Be a TA
- Do research
- In theory: think about how to formalize problems, prove theorems
- Or more applied: engineer solutions
What is a Grad school?

- A third the pay for a third the responsibilities
What is a Grad school?

- A third the pay for a third the responsibilities
- Take classes for a few years
- Be a TA
- Do research
 - In theory: think about how to formalize problems, prove theorems
 - Or more applied: engineer solutions
Imagine a circle that contains all of human knowledge:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

By the time you finish elementary school, you know a little:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

By the time you finish elementary school, you know a little:

By the time you finish high school, you know a bit more:

With a bachelor's degree, you gain a specialty:

A master's degree deepens that specialty:

Reading research papers takes you to the edge of human knowledge:

Once you're at the boundary, you focus:

You push at the boundary for a few years:

Until one day, the boundary gives way:

And, that dent you've made is called a Ph.D.:

Of course, the world looks different to you now:

So, don't forget the bigger picture:

Credit: Matt Might

http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

With a bachelor’s degree, you gain a specialty:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

A master’s degree deepens that specialty:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

Reading research papers takes you to the edge of human knowledge:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

Once you’re at the boundary, you focus:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

You push at the boundary for a few years:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

Until one day, the boundary gives way:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

And, that dent you’ve made is called a Ph.D.:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
What is a PhD?

Of course, the world looks different to you now:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
So, don’t forget the bigger picture:

Credit: Matt Might
http://matt.might.net/articles/phd-school-in-pictures/
Goal of this talk

- What is Grad school?
- Modern sequential decision making problems
- Whet your appetite with a cool problem
- Give some advice: how to prepare for grad school
Big Data

- Tons of data: \(2.5 \times 10^{18}\) bytes a day \(^1\)
- 90% of the world’s data created in the last 2 years \(^1\)
- Google: 100 billion searches a month, half from mobile \(^2\)

\(^1\)http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
\(^2\)http://blogs.wsj.com/digits/2015/10/08/
google-says-mobile-searches-surpass-those-on-pcs/
Big Data

- Tons of data: 2.5×10^{18} bytes a day 1
- 90% of the world’s data created in the last 2 years 1
- Google: 100 billion searches a month, half from mobile 2
- Personalization: Andrew Ng’s Coursera example

1http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
2http://blogs.wsj.com/digits/2015/10/08/
goole-says-mobile-searches-surpass-those-on-pcs/
Other side: Interactions

- Ubiquity of devices

Other side: Interactions

- Ubiquity of devices
- Smartphone adoption rates:\(^3\)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>% adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>South Korea</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>Australia</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>Israel</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>United States</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Spain</td>
<td>71</td>
</tr>
</tbody>
</table>

Other side: Interactions

- Ubiquity of devices
- Smartphone adoption rates: ³

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>% adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>South Korea</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>Australia</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>Israel</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>United States</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Spain</td>
<td>71</td>
</tr>
</tbody>
</table>

- Sequential Interaction

Ubiquity of devices

Smartphone adoption rates:3

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>% adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>South Korea</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>Australia</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>Israel</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>United States</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Spain</td>
<td>71</td>
</tr>
</tbody>
</table>

Sequential Interaction

Thought experiment: how did people arrange to meet before cell phones?

3 Pouchter, Jacob “Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies, Pew Research Center”. Pewglobal.org. Retrieved 2016-02-23.
Sequential Decision Making - running a newspaper

First problem: which headline to choose?
Goal: pick the headline that sells the best
First problem: which headline to choose?
Sequential Decision Making - running a newspaper

- First problem: which headline to choose?

- Goal: pick the headline that sells the best
Print Newspapers

1. Choose headline
Too late: by the time feedback comes, your headlines are stale.
Print Newspapers

1. Choose headline
2. Sell paper
3. See sales

Too late: by the time feedback comes, your headlines are stale.
Print Newspapers

1. Choose headline
2. Sell paper
3. See sales

Feedback?

Too late: by the time feedback comes, your headlines are stale.
1. User arrives
Internet

1. User arrives
2. Choose article

![Diagram showing user interaction with the Internet]
1. User arrives 2. Choose article 3. Show article
1. User arrives
2. New weights
3. Show article
4. Feedback
1. User arrives 2. New weights
Internet

1. User arrives
2. New weights
3. New article
1. User arrives
2. New weights
3. New article
4. Feedback
Internet

Sequential problem

- Unlike newspaper stand, we get repeated feedback
- Can modify our choices in *real time*

exploration vs. **exploitation**
Sequential problem

- Unlike newspaper stand, we get repeated feedback
- Can modify our choices in *real time*

exploration vs. **exploitation**

Continue to explore headlines until we are very sure we haven’t missed the best one.
Sequential problem

- Unlike newspaper stand, we get repeated feedback
- Can modify our choices in *real time*

exploration

Continue to explore headlines until we are very sure we haven’t missed the best one.

vs.

exploitation

Use the headline that has been the best so far.
Sequential problem

- Unlike newspaper stand, we get repeated feedback
- Can modify our choices in \textit{real time}

exploration vs. **exploitation**

- Continue to explore headlines until we are very sure we haven’t missed the best one.
- Use the headline that has been the best so far.

- How can we formalize this?
Multi-Armed Bandit

Given: game length T, arms $1, \ldots, K$

For $t = 1, 2, \ldots, T$:
- Adversary chooses rewards $r(t, k) \in [0, 1]$
- Learner chooses an arm k_t
- Learner gets reward $r(t, k_t)$

Figure: game protocol
Multi-Armed Bandit

Given: game length T, arms $1, \ldots, K$
For $t = 1, 2, \ldots, T$:

- Adversary chooses rewards $r(t, k) \in [0, 1]$
- Learner chooses an arm k_t
- Learner gets reward $r(t, k_t)$
Multi-Armed Bandit

Given: game length T, arms $1, \ldots, K$

For $t = 1, 2, \ldots, T$:

- Adversary chooses rewards $r(t, k) \in [0, 1]$
- Learner chooses an arm k_t
- Learner gets reward $r(t, k_t)$

Figure: game protocol

Learner does not see rewards for other actions
Given: game length T, arms 1, \ldots, K

For $t = 1, 2, \ldots, T$:

- Adversary chooses rewards $r(t, k) \in [0, 1]$
- Learner chooses an arm k_t
- Learner gets reward $r(t, k_t)$

Learner needs to randomize

Learner does not see rewards for other actions

Figure: game protocol
Multi-Armed Bandit

Given: game length T, arms $1, \ldots, K$
For $t = 1, 2, \ldots, T$:
- Adversary chooses rewards $r(t, k) \in [0, 1]$
- Learner chooses an arm k_t
- Learner gets reward $r(t, k_t)$

Figure: game protocol

Learner needs to randomize
Learner does not see rewards for other actions

$$\text{Regret}_T = \max_{k'} \sum_{t=1}^{T} r(t, k') - \sum_{t=1}^{T} r(t, k_t)$$

reward of best arm
Learner’s reward
Simple problem, but already interesting

Given: game length T, arms $1, \ldots, K$

For $t = 1, 2, \ldots, T$:
- Adversary chooses rewards $r(t, k) \in [0, 1]$
- Learner chooses an arm k_t
- Learner gets reward $r(t, k_t)$

Figure: game protocol

- Exploitation vs. exploration
- Stochastic vs. Adversarial data
Stochastic vs. Adversarial data

- **Stochastic**
 - Most of statistics, machine learning
 - Assume that data are generated from some random variable
 - E.g. arm k has mean μ_k and

$$r(t, k) = \begin{cases} 1 & \text{with probability } \mu_k \\ 0 & \text{with probability } 1 - \mu_k. \end{cases}$$

 - Past data and future data are similar
Stochastic vs. Adversarial data

- **Stochastic**
 - Most of statistics, machine learning
 - Assume that data are generated from some random variable
 - E.g. arm k has mean μ_k and
 $$r(t, k) = \begin{cases}
 1 & \text{with probability } \mu_k \\
 0 & \text{with probability } 1 - \mu_k.
 \end{cases}$$
 - Past data and future data are similar

- **Adversarial**
 - *No* assumptions on $r(t, k)$; much harder
 - Adversary could choose $r(t, k)$ based on your choices for time $1, \ldots, t - 1$ to make you do badly
 - Need regret; minimizing loss is hopeless
 $$\text{Regret}_T = \max_{k'} \sum_{t=1}^{T} r(t, k') - \sum_{t=1}^{T} r(t, k_t)$$
 - reward of best arm
 - Learner’s reward
Solutions to the bandit problem

- ϵ-greedy (warm-up)
- EXP3
ϵ-greedy

Given: parameter ϵ, arms 1, \ldots, K
For $t = 1, 2, \ldots$:

- With probability ϵ, pick arm k_t uniform at random
- Otherwise, pick $k_t = \arg \max_k \sum_{s=1}^{t-1} r(s, k)$

Easy to defeat with adversarial data
Not even optimal for stochastic data
Given: parameter ϵ, arms $1, \ldots, K$

For $t = 1, 2, \ldots$:

- With probability ϵ, pick arm k_t uniform at random
- Otherwise, pick $k_t = \arg\max_k \sum_{s=1}^{t-1} r(s, k)$

- Easy to defeat with adversarial data
- Not even optimal for stochastic data
EXP3 algorithm

Given: parameter η, arms $1, \ldots, K$
Set: $w_i(1) = 1$ for $i = 1, \ldots, K$
For $t = 1, 2, \ldots$
- Set $p_i(t) = \frac{w_i(t)}{\sum_{j=1}^{K} w_j(t)}$ for $i = 1, \ldots, K$
- Draw k_t randomly proportional to $p_1(t), \ldots, p_K(t)$
- Get reward $r(t, k_t)$
- For $i = 1, \ldots, K$ set

$$\hat{r}(t, i) = \begin{cases}
 r(t,j)/p_j(t) & \text{if } i = k_t \\
 0 & \text{otherwise,}
\end{cases}$$

$$w_j(t + 1) = w_j(t) \exp(\eta \hat{r}(t, i)) = \exp \left(\eta \sum_{s=1}^{t} \hat{r}(s, i) \right)$$
The EXP3 algorithm has the following bound:

\[
\mathbb{E} [\text{Regret}_T] = \max_{k'} \sum_{t=1}^{T} r(t, k') - \sum_{t=1}^{T} \mathbb{E} [r(t, k_t)] \\
\leq \frac{\eta TK}{2} + \frac{\log(K)}{\eta}.
\]

If we tune \(\gamma \) for \(T \),

\[
\mathbb{E} [\text{Regret}_T] \leq \sqrt{2KT \log(K)}.
\]
Theorem

The EXP3 algorithm has the following bound:

$$\mathbb{E} [\text{Regret}_T] = \max_{k'} \sum_{t=1}^{T} r(t, k') - \sum_{t=1}^{T} \mathbb{E} [r(t, k_t)]$$

$$\leq \frac{\eta TK}{2} + \frac{\log(K)}{\eta}.$$

If we tune γ for T,

$$\mathbb{E} [\text{Regret}_T] \leq \sqrt{2KT \log(K)}.$$
The EXP3 algorithm has the following bound:

\[
\mathbb{E} [\text{Regret}_T] = \max_{k'} \sum_{t=1}^T r(t, k') - \sum_{t=1}^T \mathbb{E} [r(t, k_t)] \\
\leq \frac{\eta TK}{2} + \frac{\log(K)}{\eta}.
\]

If we tune \(\gamma \) for \(T \),

\[
\mathbb{E} [\text{Regret}_T] \leq \sqrt{2KT \log(K)}.
\]

Regret per round \(\rightarrow 0 \)

lower bound of \(\Omega(\sqrt{KT}) \)
Recap

- Started with real world problem
- Abstracted into Multi-Armed Bandit framework
- Proposed algorithms
- Proved upper bounds on their regret
- Compared to lower bounds
Goals of this talk

- What is Grad school?
- Modern sequential decision making problems
- Whet your appetite with a cool problem
- Give some advice: how to prepare for grad school
Things I wish I knew in college

- Your professors want to talk to you and meet undergrads. Go to their office hours, group meetings, ask about problems.
- If research might be for you, get involved early (sophomore).
- You will need three good letters to get a good grad school.
- Sometimes you will learn more from a research project than an extra class.
- Failing is part of it!
Things I wish I knew in college

- Your professors want to talk to you and meet undergrads
Things I wish I knew in college

- Your professors want to talk to you and meet undergrads
- Go to their office hours, group meetings, ask about problems
Things I wish I knew in college

- Your professors want to talk to you and meet undergrads
- Go to their office hours, group meetings, ask about problems
- If research might be for you, get involved early (sophomore)
Things I wish I knew in college

- Your professors want to talk to you and meet undergrads
- Go to their office hours, group meetings, ask about problems
- If research might be for you, get involved early (sophomore)
- You will need three good letters to get a good grad school
Things I wish I knew in college

- Your professors want to talk to you and meet undergrads
- Go to their office hours, group meetings, ask about problems
- If research might be for you, get involved early (sophomore)
- You will need three good letters to get a good grad school
- Sometimes you will learn more from a research project than an extra class
Things I wish I knew in college

- Your professors want to talk to you and meet undergrads
- Go to their office hours, group meetings, ask about problems
- If research might be for you, get involved early (sophomore)
- You will need three good letters to get a good grad school
- Sometimes you will learn more from a research project than an extra class

Failing is part of it!
Is a PhD for you?

Pros:
- Research is also rewarding; occasionally fun
- Very independent
- Become an expert in something!
- Exciting problems
Is a PhD for you?

Pros:
- Research is also rewarding; occasionally fun
- Very independent
- Become an expert in something!
- Exciting problems

Cons:
- Research is frustrating; many more failed attempts
- Long hours, little pay
- Few jobs require a PhD
- Don’t escape politics
Thank you!