Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, Alan Malek \& Michal Valko

What Gives?

Find your best option when the data is potentially non-stochastic or adversarial!

The Game: Learner vs Adversary

For $t=1,2, \ldots, n$,

- simultaneously, Learner picks arm $I_{t} \in[K]$,
- $/ \wedge$ picks gain $\boldsymbol{g}_{t} \in[0,1]^{K}$
- Then, the learner observes $\boldsymbol{g}_{t, I_{t}}$

Recommend arm J_{n} hoping $J_{n}=k^{\star}$.Adversarial
A Stochastic
arbitrary $\boldsymbol{g}_{k, t}$
$k_{g}^{\star}=\arg \max _{k \in[K]} G_{k}$ $G_{k}=\sum_{t=1}^{n} \boldsymbol{g}_{k, t}$
$e_{\mathrm{ADV}}(n) \triangleq \mathbb{P}\left(J_{n} \neq k_{g}^{\star}\right)$

¡IMPOSSIBLE BOB!

New notion of complexity

$$
H_{\mathrm{BOB}} \triangleq \frac{1}{\Delta_{(1)}} \max _{k \in[K]} \frac{k}{\Delta_{(k)}}
$$

Th 3 (Lower bound for the BOB challenge). For any learner, for any $H_{\text {BOB }}$ there exists an stochastic problem with complexity H_{BOB} such that

$$
\text { if } \quad e_{\mathrm{STO}}(n) \leq \frac{1}{64} \exp \left(-\frac{2048 n}{H_{\mathrm{BOB}}}\right) \text {, }
$$

then there exists an adversarial problem where

$$
e_{\mathrm{ADV}(g)}(n) \geq \frac{1}{16}
$$

DIFFERENT REGIMES

$$
H_{\mathrm{SR}} \leq H_{\mathrm{BOB}} \leq H_{\mathrm{UNIF}}
$$

Gaps: $\quad n \Delta_{k}^{g} \triangleq \begin{cases}G_{(1)}-G_{k} & \text { if } k \neq k_{\boldsymbol{g}}^{\star}, \\ G_{(1)}-G_{(2)} & \text { if } k=k_{\boldsymbol{g}}^{\star} .\end{cases}$
Notions of complexity:

$$
H_{\mathrm{SR}} \triangleq \max _{k \in[K]} \frac{k}{\Delta_{(k)}^{2}} \quad \text { and } \quad H_{\mathrm{UNIF}} \triangleq \frac{K}{\Delta_{(1)}^{2}}
$$

OPTIMAL UNIFORM LEARNER

Rule: I_{t} uniformly at random.
Th 1 (Rule vs. ©). For all n, adversarial \boldsymbol{g},

$$
e_{\mathrm{ADV}(g)}(n)=\mathcal{O}\left(\exp \left(-\frac{n}{H_{\mathrm{UNIF}(g)}}\right)\right)
$$

Th 2 (Lower bound). For any learner, a g^{1} of complexity H_{UNIF},

Rule: optimal gap-dependent rates against Θ.

¿BEST OF BOTH WORLDS? (BOB)

Existing robust solutions?

		$e_{\mathrm{STO}}(n)$		$e_{\mathrm{ADV}(g)}(n)$
SR [1]		$e^{\frac{-n}{H_{\text {SR }} \log K}}$	\boldsymbol{X}	1
Rule	\boldsymbol{X}	$e^{\frac{-n}{H_{\text {UNIF }}}}$		$e^{\frac{-n}{H_{\text {UNIF }}}}$

BOB question: A learner performing optimally in both the stochastic and adversarial cases while not being aware of the nature of the rewards?

Why is the $B O B$ question challenging?

- Bias of estimator $\widehat{G}_{k, t}=\frac{t \sum_{t^{\prime}=1}^{t} 1\left\{I_{t^{\prime}}=k\right\} \boldsymbol{g}_{k, t^{\prime}}}{\sum^{t} t} 1\left\{I_{\iota^{\prime}}=k\right\} \quad$
- Variance of $\widetilde{G}_{k, t}=\sum_{t^{\prime}=1}^{t} \frac{\boldsymbol{g}_{k, t^{\prime}}}{p_{k, t^{\prime}}} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}$

Pull uniformly for too long and incur a large variance of order K in $G_{k, t}$

The P1 ALgorithm

P1 pulls - the $\widehat{\text { best }}$ arm with probability

- the second $\widehat{\text { best }}$ arm with proba
- the third $\widehat{\text { best }}$ arm with probability $\frac{1}{3}$
- and so on ... (and normalize)

For $t=1,2$,

- Sort \& rank arms by decreasing $\widetilde{G}_{\cdot, t-1}$ Rank arm k as $\widetilde{\langle k\rangle_{t}} \in[K]^{a}$
- Select I_{t} with $\mathbb{P}\left(I_{t}=k\right) \triangleq \frac{1}{\widetilde{\langle k\rangle_{t}} \overline{\log } K}$

Recommend, $J_{t} \triangleq \arg \max _{k \in[K]} \widetilde{G}_{k, t}$.
${ }^{a}$ Brake arbitrarily any problematic comparisons.

W.r.t. Rule, P1 early bets are almost costless!

P1 follows the allocation proportions of SR[1]

STOCHASTIC CASE EXPERIMENTS

Experimental setup	$H_{\text {SR }}$	$H_{\text {BOB }}$	$H_{\text {UNIF }}$
1. 1 group of bad arms	2000	2000	2000
2. 2 groups of bad arms	1389	2083	3125
3. Geometric prog	5540	5540	11080
4. 3 groups of bad arms	400	500	938
5. Arithmetic prog	3200	3200	24000
6. 2 good, many bad	5000	7692	50000
7. 3 groups of bad arms	4082	5714	12000
8. Square-root gaps	3200	22 M	160 M

