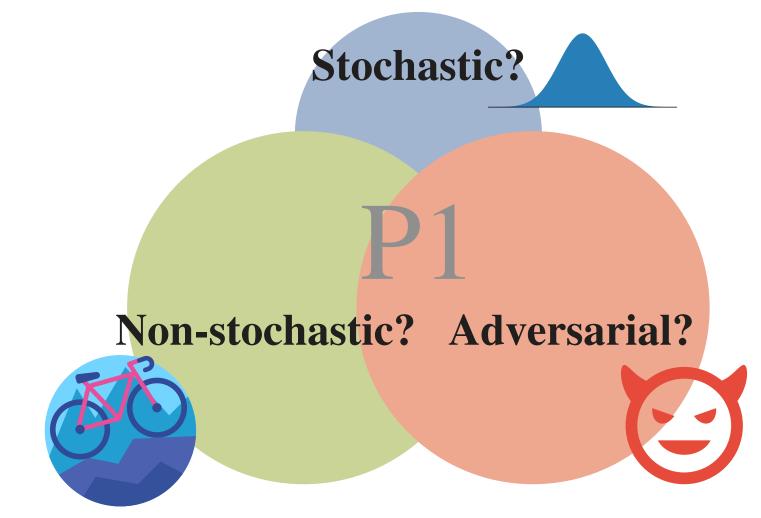
BEST OF BOTH WORLDS:

STOCHASTIC & ADVERSARIAL

BEST-ARMIDENTIFICATION

Yasın Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, Alan Malek & Michal Valko

WHAT GIVES?



Find your best option when the data is potentially non-stochastic or adversarial!

THE GAME: LEARNER VS ADVERSARY

For t = 1, 2, ..., n,

- \blacktriangleright simultaneously, Learner picks arm $I_t \in [K]$,
- lacksquare picks gain $oldsymbol{g}_t \in [0,1]^K$.
- Then, the learner observes $oldsymbol{g}_{t,I_t}$. Recommend arm J_n hoping $J_n = k^*$.

Adversarial ©

 $k_{\mathbf{q}}^{\star} = \arg\max_{k \in [K]} G_k$

 $G_k = \sum_{t=1}^n \boldsymbol{g}_{k,t}$

Stochastic

arbitrary $oldsymbol{g}_{k,t}$ $oldsymbol{g}_{k,t}$ sampled i.i.d. from u_k

$$k_{\text{STO}}^{\star} = \arg\max_{k \in [K]} \mu_k$$

 $e_{\mathsf{ADV}}(n) \triangleq \mathbb{P}\left(J_n \neq k_{\mathsf{q}}^{\star}\right) \mid e_{\mathsf{STO}}(n) \triangleq \mathbb{P}\left(J_n \neq k_{\mathsf{STO}}^{\star}\right)$

 $n\Delta_k^{\boldsymbol{g}} \triangleq \begin{cases} G_{(1)} - G_k & \text{if } k \neq k_{\boldsymbol{g}}^{\star}, \\ G_{(1)} - G_{(2)} & \text{if } k = k_{\boldsymbol{g}}^{\star}. \end{cases}$ Gaps:

Notions of complexity:

$$H_{\mathrm{SR}} \triangleq \max_{k \in [K]} \frac{k}{\Delta_{(k)}^2} \quad \text{and} \quad H_{\mathrm{UNIF}} \triangleq \frac{K}{\Delta_{(1)}^2}.$$

OPTIMAL UNIFORM LEARNER

Rule: I_t uniformly at random.

Th 1 (Rule vs. \bigcirc). For all n, adversarial q,

$$e_{\text{ADV}(g)}(n) = \mathcal{O}\left(\exp\left(-\frac{n}{H_{\text{UNIF}(g)}}\right)\right).$$

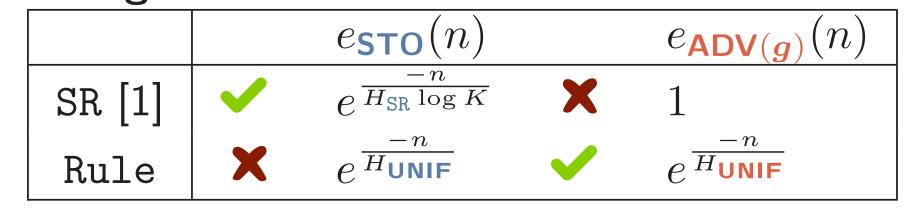
Th 2 (\bigcirc Lower bound). For any learner, a g^1 of complexity H_{UNIF} ,

$$e_{m{g}}$$
1 $(n)=\Omega\left(\exp\left(-rac{n}{H_{ ext{UNIF}}}
ight)
ight)$

Rule: optimal gap-dependent rates against .

¿BEST OF BOTH WORLDS? (BOB)

Existing robust solutions?



BOB question: A learner performing optimally in **both** the stochastic and adversarial cases while not being aware of the nature of the rewards?

Why is the BOB question challenging?

- ▶ Bias of estimator $\widehat{G}_{k,t} = \frac{t\sum_{t'=1}^{t}\mathbf{1}\{I_{t'}=k\}g_{k,t'}}{\sum_{t'=1}^{t}\mathbf{1}\{I_{t'}=k\}}$ ▶ Variance of $\widetilde{G}_{k,t} = \sum_{t'=1}^{t}\frac{g_{k,t'}}{p_{k,t'}}\mathbf{1}\{I_{t'}=k\}$

Pull uniformly for too long and incur a large variance of order K in $G_{k,t}$.

IMPOSSIBLE BOB!

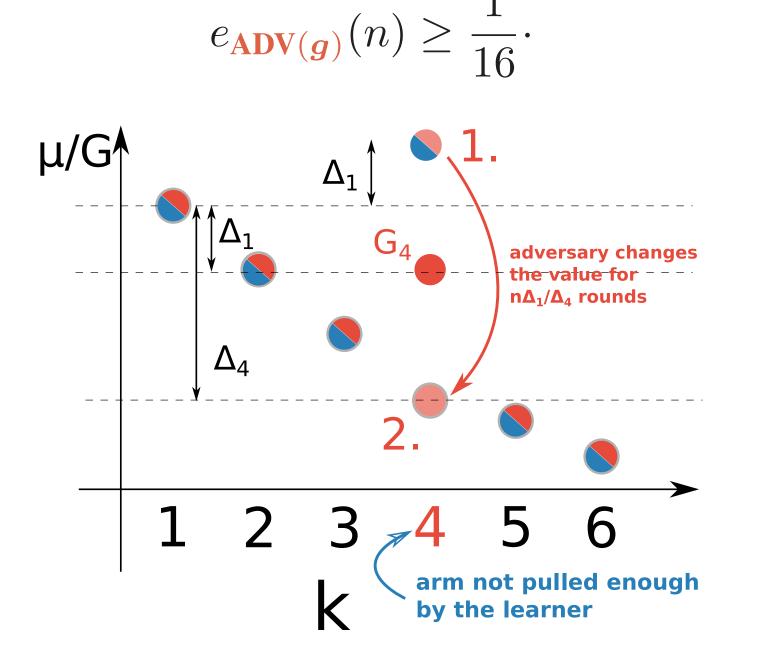
New notion of complexity

$$H_{\text{BOB}} \triangleq \frac{1}{\Delta_{(1)}} \max_{k \in [K]} \frac{k}{\Delta_{(k)}}$$

Th 3 (Lower bound for the BOB challenge). For any learner, for any H_{BOB} there exists an stochastic problem with complexity H_{BOB} such that

if
$$e_{\text{STO}}(n) \leq \frac{1}{64} \exp\left(-\frac{2048n}{H_{\text{BOB}}}\right)$$
,

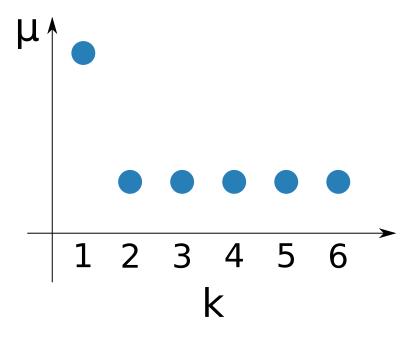
then there exists an adversarial problem where



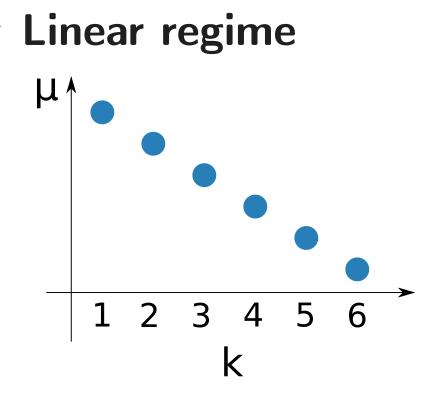
DIFFERENT REGIMES

$$H_{\rm SR} \leq H_{\rm BOB} \leq H_{\rm UNIF}$$
.

Flat regime



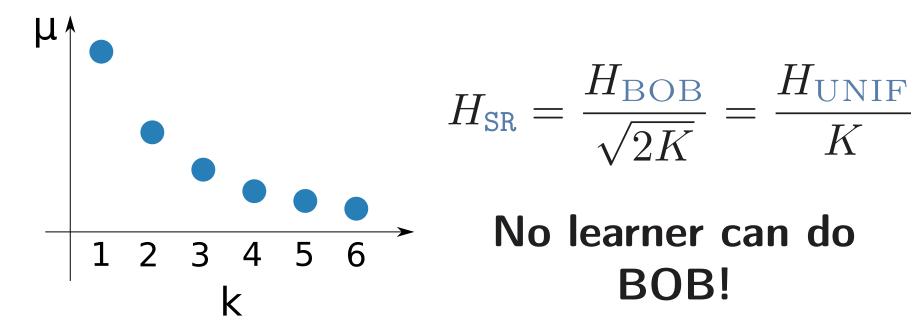
 $H_{\rm SR} = H_{\rm BOB} = H_{\rm UNIF}$ BOB is achieved by Rule.



 $H_{\rm SR} = H_{\rm BOB} = \frac{H_{\rm UNIF}}{\mathcal{U}}$ BOB can be achieved but not by Rule.

We need a new learner!

Square-root regime



Theorem 1 (Upper bounds for P1). *For any problems:*

$$\bullet e_{STO}(n) = \mathcal{O}\left(\exp\left(-\frac{n}{H_{BOB}\log^2(K)}\right)\right)$$

$$\bullet e_{ADV(g)}(n) = \mathcal{O}\left(\exp\left(-\frac{n}{\overline{\log}(K)H_{UNIF(g)}}\right)\right)$$

[1] J.-Y. Audibert, S. Bubeck, and R. Munos. Best-arm identification in multi-armed bandits. In Conference on Learning Theory, 2010.

THE P1 ALGORITHM

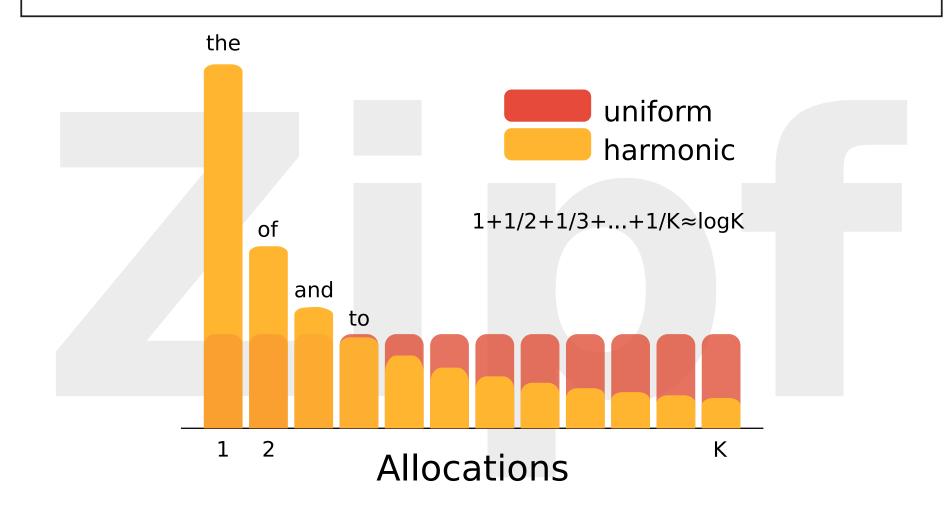
- P1 pulls the \widehat{best} arm with probability
 - ullet the second \widehat{best} arm with proba
 - the third \widehat{best} arm with probability $\frac{1}{3}$
 - and so on ... (and normalize)

For t = 1, 2, ...

- Sort & rank arms by decreasing $\widetilde{G}_{\cdot,t-1}$: Rank arm k as $\langle k \rangle_t \in [K]^a$.
- Select I_t with $\mathbb{P}(I_t = k) \triangleq \frac{1}{2}$. $\widetilde{\langle k \rangle}_t \ \overline{\log} K$

Recommend, $J_t \triangleq \arg \max_{k \in [K]} G_{k,t}$.

^aBrake arbitrarily any problematic comparisons.

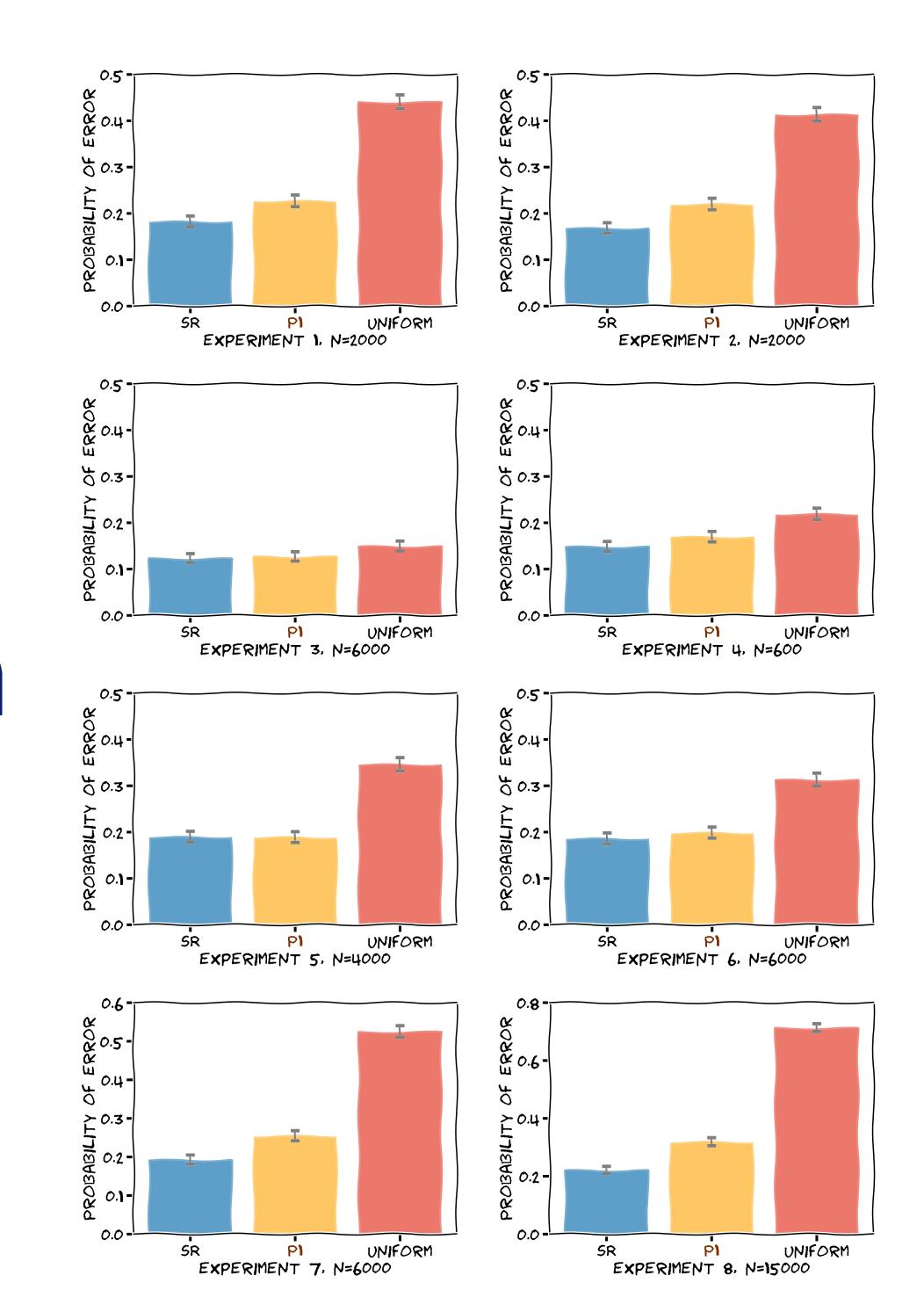


W.r.t. Rule, P1 early bets are almost costless!

P1 follows the allocation proportions of SR[1]

STOCHASTIC CASE EXPERIMENTS

Experimental setup	$H_{\mathtt{SR}}$	$H_{ m BOB}$	$H_{ m UNIF}$
1. 1 group of bad arms	2000	2000	2000
2. 2 groups of bad arms	1389	2083	3125
3. Geometric prog	5540	5540	11080
4. 3 groups of bad arms	400	500	938
5. Arithmetic prog	3200	3200	24000
6. 2 good, many bad	5000	7692	50000
7. 3 groups of bad arms	4082	5714	12000
8. Square-root gaps	3200	22M	160M



Empirical behavior in the figures mimics the behavior of the complexities in the table.