Minimax Fixed-Design Linear Regression

Peter L. Bartlett, Wouter M. Koolen, Alan Malek, Eiji Takimoto, Manfred Warmuth

Berkeley

C.JI Queensland University of Technology

Conference on Learning Theory
Paris, France
July 5th, 2015

Context: Linear regression

- We have data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{T}, y_{T}\right)$
- Offline linear regression: predict $\hat{y}=\theta^{\top} \boldsymbol{x}$, where

$$
\theta=\left(X^{\top} X\right)^{-1} X^{\top} Y
$$

Context: Linear regression

- We have data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{T}, y_{T}\right)$
- Offline linear regression: predict $\hat{y}=\theta^{\top} \boldsymbol{x}$, where

$$
\theta=\left(X^{\top} X\right)^{-1} X^{\top} Y
$$

- Online fixed-design linear regression:

1. Covariates x_{1}, \ldots, x_{T} are fixed at the start
2. Need to predict \hat{y}_{t} before seeing y_{t}

Protocol

Given: $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T} \in \mathbb{R}^{d}$

For $t=1,2, \ldots, T$:

- Learner predicts $\hat{y}_{t} \in \mathbb{R}$,
- Adversary reveals $y_{t} \in \mathbb{R}$,
- Learner incurs loss $\left(\hat{y}_{t}-y_{t}\right)^{2}$.

Figure: Fixed-design protocol

Minimax

Our goal is to find a strategy that achieves the minimax regret:

$$
\min _{\hat{y}_{1}} \max _{y_{1}} \cdots \min _{\hat{y}_{T}} \max _{y_{T}} \sum_{t=1}^{T}\left(\hat{y}_{t}-y_{t}\right)^{2}-\min _{\theta \in \mathbb{R}^{d}} \sum_{t=1}^{T}\left(\theta^{\top} x_{t}-y_{t}\right)^{2}
$$

Minimax

Our goal is to find a strategy that achieves the minimax regret:

$$
\min _{\hat{y}_{1}} \max _{y_{1}} \cdots \min _{\hat{y}_{T}} \max _{y_{T}} \underbrace{\sum_{t=1}^{T}\left(\hat{y}_{t}-y_{t}\right)^{2}}_{\text {algorithm }}-\min _{\theta \in \mathbb{R}^{d}} \sum_{t=1}^{T}\left(\theta^{\top} x_{t}-y_{t}\right)^{2}
$$

Minimax

Our goal is to find a strategy that achieves the minimax regret:

$$
\min _{\hat{y}_{1}} \max _{y_{1}} \cdots \min _{\hat{y}_{T}} \max _{y_{T}} \underbrace{\sum_{t=1}^{T}\left(\hat{y}_{t}-y_{t}\right)^{2}}_{\text {algorithm }}-\underbrace{\min _{\theta \in \mathbb{R}^{d}} \sum_{t=1}^{T}\left(\theta^{\top} \boldsymbol{x}_{t}-y_{t}\right)^{2}}_{\text {best linear predictor }}
$$

The Minimax Strategy

- Is linear

$$
\hat{y}_{t}=s_{t-1}^{\top} P_{t} x_{t} \quad \text { where } \quad s_{t}=\sum_{q=1}^{t} x_{q} y_{q}
$$

- with coefficients:

$$
P_{t}^{-1}=\sum_{q=1}^{t} x_{q} x_{q}^{\top}+\sum_{q=t+1}^{T} \frac{x_{q}^{\top} P_{q} x_{q}}{1+x_{q}^{\top} P_{q} x_{q}} x_{q} x_{q}^{\top}
$$

- Cheap recursive calculation, can be done before seeing $y_{t} \mathrm{~s}$.
- Minimax under alignment condition and $\left|y_{t}\right| \leq B$

The Minimax Strategy

- Is linear

$$
\hat{y}_{t}=s_{t-1}^{\top} P_{t} x_{t} \quad \text { where } \quad s_{t}=\sum_{q=1}^{t} x_{q} y_{q}
$$

- with coefficients:

$$
P_{t}^{-1}=\underbrace{\sum_{q=1}^{t} x_{q} x_{q}^{\top}}_{\text {least squares }}+\underbrace{\sum_{q=t+1}^{T} \frac{x_{q}^{\top} P_{q} x_{q}}{1+x_{q}^{\top} P_{q} x_{q}} x_{q} x_{q}^{\top}}_{\text {re-weighted future instances }} .
$$

- Cheap recursive calculation, can be done before seeing $y_{t} \mathrm{~s}$.
- Minimax under alignment condition and $\left|y_{t}\right| \leq B$

Guarantees

- If the adversary plays y_{t} with

$$
\sum_{t=1}^{T} y_{t}^{2} \boldsymbol{x}_{t}^{\top} P_{t} \boldsymbol{x}_{t}=R
$$

we are minimax against all $y_{t} \mathrm{~s}$ in this set

- Explains re-weighting:

$$
P_{t}^{-1}=\sum_{q=1}^{t} x_{q} x_{q}^{\top}+\sum_{q=t+1}^{T} \underbrace{\frac{x_{q}^{\top} P_{q} x_{q}}{1+x_{q}^{\top} P_{q} x_{q}}}_{\text {future regret potential }} x_{q} x_{q}^{\top}
$$

- Minimax strategy does not depend on R
- We achieve regret exactly $R=O(\log T)$

Guarantees

- If the adversary plays y_{t} with

$$
\sum_{t=1}^{T} y_{t}^{2} \boldsymbol{x}_{t}^{\top} P_{t} \boldsymbol{x}_{t}=R
$$

we are minimax against all $y_{t} \mathrm{~s}$ in this set

- Explains re-weighting:

$$
P_{t}^{-1}=\sum_{q=1}^{t} x_{q} x_{q}^{\top}+\sum_{q=t+1}^{T} \underbrace{\frac{x_{q}^{\top} P_{q} x_{q}}{1+x_{q}^{\top} P_{q} x_{q}}}_{\text {future regret potential }} x_{q} x_{q}^{\top}
$$

- Minimax strategy does not depend on R
- We achieve regret exactly $R=O(\log T)$
- Thanks!

