Minimax Fixed-Design Linear Regression

Peter L. Bartlett, Wouter M. Koolen, **Alan Malek**, Eiji Takimoto, Manfred Warmuth

Conference on Learning Theory
Paris, France
July 5th, 2015

Context: Linear regression

- We have data $(x_1, y_1), \ldots, (x_T, y_T)$
- ▶ Offline linear regression: predict $\hat{y} = \theta^{\mathsf{T}} x$, where

$$\theta = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y.$$

Context: Linear regression

- We have data $(x_1, y_1), \ldots, (x_T, y_T)$
- ▶ Offline linear regression: predict $\hat{y} = \theta^{\mathsf{T}} x$, where

$$\theta = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y.$$

- Online fixed-design linear regression:
 - 1. Covariates x_1, \ldots, x_T are fixed at the start
 - 2. Need to predict \hat{y}_t before seeing y_t

Protocol

Given: $x_1, \dots, x_T \in \mathbb{R}^d$ For $t = 1, 2, \dots, T$: • Learner predicts $\hat{y}_t \in \mathbb{R}$,

- Adversary reveals $\mathbf{y}_t \in \mathbb{R}$,
- Learner incurs loss $(\hat{y}_t y_t)^2$.

Figure: Fixed-design protocol

Minimax

Our goal is to find a strategy that achieves the minimax regret:

$$\min_{\hat{y}_1} \max_{\mathbf{y}_1} \cdots \min_{\hat{y}_T} \max_{\mathbf{y}_T} \sum_{t=1}^T (\hat{y}_t - \mathbf{y}_t)^2 - \min_{\theta \in \mathbb{R}^d} \sum_{t=1}^T (\theta^\mathsf{T} \mathbf{x}_t - \mathbf{y}_t)^2$$

Minimax

Our goal is to find a strategy that achieves the minimax regret:

$$\min_{\hat{y}_1} \max_{\mathbf{y}_1} \cdots \min_{\hat{y}_T} \max_{\mathbf{y}_T} \underbrace{\sum_{t=1}^T (\hat{y}_t - \mathbf{y}_t)^2}_{\text{algorithm}} - \min_{\theta \in \mathbb{R}^d} \sum_{t=1}^T (\theta^\mathsf{T} \boldsymbol{x}_t - \mathbf{y}_t)^2$$

Minimax

Our goal is to find a strategy that achieves the minimax regret:

$$\min_{\hat{y}_1} \max_{y_1} \cdots \min_{\hat{y}_T} \max_{y_T} \underbrace{\sum_{t=1}^T (\hat{y}_t - y_t)^2}_{\text{algorithm}} - \underbrace{\min_{\theta \in \mathbb{R}^d} \sum_{t=1}^T (\theta^\mathsf{T} x_t - y_t)^2}_{\text{best linear predictor}}$$

The Minimax Strategy

Is linear

$$\hat{y}_t = s_{t-1}^{\intercal} P_t x_t$$
 where $s_t = \sum_{q=1}^t x_q y_q$,

with coefficients:

$$m{P}_t^{-1} \ = \ \sum_{q=1}^t m{x}_q m{x}_q^\intercal + \ \sum_{q=t+1}^T rac{m{x}_q^\intercal m{P}_q m{x}_q}{1 + m{x}_q^\intercal m{P}_q m{x}_q} m{x}_q m{x}_q^\intercal.$$

- ▶ Cheap recursive calculation, can be done before seeing y_t s.
- ▶ Minimax under alignment condition and $|y_t| \le B$

The Minimax Strategy

Is linear

$$\hat{y}_t = s_{t-1}^\intercal P_t x_t$$
 where $s_t = \sum_{q=1}^t x_q y_q$

with coefficients:

$$m{P}_t^{-1} = \underbrace{\sum_{q=1}^t m{x}_q m{x}_q^\intercal}_{ ext{least squares}} + \underbrace{\sum_{q=t+1}^T rac{m{x}_q^\intercal m{P}_q m{x}_q}{1 + m{x}_q^\intercal m{P}_q m{x}_q} m{x}_q m{x}_q^\intercal}_{ ext{re-weighted future instances}}.$$

- ▶ Cheap recursive calculation, can be done before seeing y_t s.
- ▶ Minimax under alignment condition and $|y_t| \le B$

Guarantees

▶ If the adversary plays y_t with

$$\sum_{t=1}^{I} y_t^2 x_t^{\mathsf{T}} \mathbf{P}_t x_t = R,$$

we are minimax against all y_t s in this set

Explains re-weighting:

$$m{P}_t^{-1} = \sum_{q=1}^t m{x}_q m{x}_q^\intercal + \sum_{q=t+1}^T \underbrace{m{x}_q^\intercal m{P}_q m{x}_q}_{ ext{future regret potential}} m{x}_q m{x}_q^\intercal$$

- Minimax strategy does not depend on R
- We achieve regret exactly $R = O(\log T)$

Guarantees

▶ If the adversary plays *y*^t with

$$\sum_{t=1}^{T} y_t^2 x_t^{\mathsf{T}} \mathbf{P}_t x_t = R,$$

we are minimax against all y_t s in this set

Explains re-weighting:

$$m{P}_t^{-1} = \sum_{q=1}^t m{x}_q m{x}_q^\intercal + \sum_{q=t+1}^T \underbrace{m{x}_q^\intercal m{P}_q m{x}_q}_{ ext{future regret potential}} m{x}_q m{x}_q^\intercal$$

- Minimax strategy does not depend on R
- We achieve regret exactly $R = O(\log T)$
- Thanks!