MINIMAX FIXED-DESIGN LINEAR REGRESSION
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SCOPE AND CONTRIBUTION

Linear regression is one of the fundamental ma-
chine learning tasks.

We consider the online version of linear regres-
sion with fixed design (instances are revealed
from the outset, labels are predicted sequen-
tially). We show that the exact minimax strategy
is tractable.

o Ideal reqularization emerges from the problem
e Case study for incorporating unlabeled data

e Optimal strategy employs intricate shrinkage

PROTOCOL

Given: z1,...,xp € R?
Fort=1,2,....,1T":

e [earner issues prediction y, € R

o Adversary reveals label y, € R
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e Learner incurs loss (7, — y,)".

OFFLINE PROBLEM
The best linear predictor in hindsight:
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ONLINE PROBLEM

The goal of the learner is to predict almost as
well as the best linear predictor in hindsight.
The overhead is measured by the regret
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We consider the minimax problem

min max - - - minmax Rp
Yi Ya Yr YT

So, what is the optimal strategy to choose 7,
GIVEN Uyy .oy Yp_1?

POPULAR APPROACHES
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RECURRENCE

Detine recursively
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least squares re-weighted future instances

We can compute Py - -+ Pp in O(Td? 4 d?) time.

THE MM STRATEGY

After t rounds, define a summary statistic s; =

22:1 y,Tq- We define the MM strategy to pre-
dict
Jir1 = Tl Pir18e, (MM)

BOX-CONSTRAINED LABELS

Consider the label sequence constraint

VB = {(?/17 o yr) Y| < Bt}

We show that (MM) is minimax for this set pro-
vided that the budgets B = (By,...,Br) are
compatible with the covariates by satisfying
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q=1
In this case, the minimax regret is
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and the maximin probability distribution for
Vi1 puts weight 1/2 £ ;| P1y18:/(2B¢41) on
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ELLIPSE-CONSTRAINED LABELS

Fix a budget R > 0, and consider label se-
quences

We show that (MM) is minimax for this set.

In fact, the regret of (MM) equals
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This means that this algorithm has two very
special properties. First, it is a strong equalizer
in the sense that it suffers the same regret on
all 27 sign-flips of the labels. And second, it is
adaptive to the complexity R of the labels.
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ANALYSIS FLAVOR

Recursion for value of minimax problem.
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with the state (s;, 07) after ¢t rounds defined by

{
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(and So = O, 0'8 — O)

CRUX: VALUE STAYS QUADRATIC
We show by induction that

W(Stagtz) = s{ P18 — U? TVt
with the v, coetficients recursively defined by

v =0, v =41+ Bio®l  Pryixeg.

(where |y,| < B;) and hence the value equals
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CLIPPING

The condition (1) is necessary to ensure that the
label constraint |y,| < B; on the adversary is
inactive tor the worst-case label.

If (1) is violated then the Adversary is clipped to
y, = £B; and the Learner benefits by clipping
as well. This breaks the nice quadratic recur-
s101.

REGRET BOUND

For box-constrained label with B; = B we
prove that

Rr < O(B*dInT)

(independent of scale of x4, ..., x71).

FUTURE DIRECTIONS

o Worst-case ordering of given set of covari-
ates? In 1d increasing magnitude seems
hardest. How does this generalize?

Worst-case covariates?  We conjecture

composition of orthogonal 1d problems.
Would improve regret to O(B*dIn(T'/d)).

Gap between minimax and strategies like
[?] with correct asymptotics. O(InlnT')
difference?

Worst case covariates with adversarial de-
sign? Is the minimax analysis tractable,
perhaps under some reasonable condi-
tions?




