SEQUENTIAL MULTIPLE HYPOTHESIS TESTING WITH TYPE I ERROR CONTROL

ALAN MALEK, SUMEET KATARIYA, YINLAM CHOW, AND MOHAMMAD GHAVAMZADEH

HYPOTHESIS TESTING, A/B TESTING

- 1. Statisticaly rigorous method to decide between
 - (a) Null Hypothesis H_0 (e.g. $\mu_A = \mu_B$)
 - (b) Alternative Hypothesis H_1 (e.g. $\mu_A \neq \mu_B$)
- 2. Hypothesis test: data $(x_1, \ldots, x_N) \mapsto \{\text{reject, fail to reject}\}$
- 3. We require
 - (a) Type I error (rejecting H_0 when it is true) $< \alpha$
 - (b) Type II error (failing to reject H_0 when it is false) $< \beta$

MULTIPLE HYPOTHESIS TESTING

- 1. Have m tests, $(H_{0,1} \text{ vs. } H_{1,1}), \ldots, (H_{0,m} \text{ vs. } H_{1,m})$
- 2. MHT procedure $\mathcal{P}:(p_1,\ldots,p_m)\mapsto \{\text{reject},\text{fail to reject}\}^m$
- 3. Results summarized by

	not-rejected	rejected	total
H_0 true	U	V	m_0
H_0 false	W	S	$m-m_0$
total	m-R	R	\overline{m}

- 4. Want U and S to be large, V and W to be small
- 5. No single notion of type I or II errors
- 6. Common goals

$$\mathsf{FWER} := P(V \geq 1) \quad \mathsf{and} \quad \mathsf{FDR} := \mathbb{E}\left[\frac{V}{R \vee 1}\right]$$

7. Type II error versions

$$\mathsf{FWER}\, \mathrm{II}\!:=\!P(W\!\ge\!1) \quad \text{and} \quad \mathsf{FNR}\!:=\!\mathbb{E}\!\left[\frac{W}{(m\!-\!R)\!\vee\!1}\right]$$

ERROR NOTIONS

Definition 1 \mathcal{P} has an (f,q) error guarantee if

$$\mathbb{E}\left[f(V,S)\right] \le q \tag{1}$$

 $\forall m, m_0$, distributions on S, and if true null p-values are marginally uniform.

If Eq. 1 holds only when $p^{\pi(1)}, \ldots, p^{\pi(m_0)}$ are i.i.d. uniform, we will say that \mathcal{P} has an (f,q) error guarantee under independence (a weaker condition).

Common examples:

- 1. FWER: $f(V, S) = \mathbf{1}\{V > 0\}$
- 2. FDR: $f(V, S) = \frac{V}{(V+S) \vee 1}$

COMMON MHT PROCEDURES

Definition 2 (monotonic procedures) $p^{(1)} \le ... \le p^{(m)}$ are in ascending order, $\alpha_1, ..., \alpha_m$ sequence of decision thresholds

- 1. step-up procedure rejects tests $(1), \ldots, (\max\{k: p^{(k)} \leq \alpha_k\})$
- 2. step-down procedure rejects tests $(1), \ldots, (\min\{k: p^{(k)} > \alpha_k\} 1)$

Most common examples:

Name	α	type	guarantee
Bonferroni	$\alpha_k = \frac{q}{m}$	both	FWER
Holm	$\alpha_k = \frac{\ddot{q}}{m-k}$	step-down	FWER
Hochberg	$\alpha_k = \frac{m_q}{m-k}$	step-up	FDR
Benjimini-Hochberg	$\alpha_k = \frac{k-q}{m}$	step-up	FDR

SEQUENTIAL p-VALUES

Definition 3 A sequential p-value is a sequence of mappings $p_t: \mathcal{X}^t \to [0,1]$ s.t., under the null hypothesis,

1. (super-uniform) for any $\delta \in [0,1]$ and any $t \geq 1$

$$P\left(\sup_{s\leq t} p_s(X_1,\ldots,X_s)\leq \delta\right)\leq \delta \tag{2}$$

2. (non-increasing) for any $\{x_t\}_{t\geq 1}$, for all t,

$$p_t(x_1, \dots, x_t) \ge p_{t+1}(x_1, \dots, x_{t+1}).$$
 (3)

EXAMPLES

- 1. SPRT: $\frac{1}{\sup_{n' \leq t} L_{n'}}$ where $L_n = \frac{\prod_{i=1}^n f_1(X_i)}{\prod_{i=1}^n f_0(X_i)}$ is the likelihood ratio
- 2. Test martingales: $\frac{1}{\sup_{n' \le t} \Lambda_{n'}}$ where Λ_t is a positive supermartingale with $\mathbb{E}[\Lambda_0] = 1$. In general, for any such Λ_t , $P(\sup_t X_t > b) \le \frac{1}{b}$.

SEQUENTIAL CONVERSION

Input: stopping time T, procedure \mathcal{P} , error qInitialize p_0^1, \ldots, p_0^m to 1 and $\mathcal{S}_0 = (0, \ldots, 0)$ For $t = 1, 2, \ldots$,

- 1. Set $S_t = \mathcal{P}(p_{t-1}^1, \dots, p_{t-1}^m)$
- 2. For each k, if $S_t(k) = 0$, draw a sample and update p_t^k
- 3. Otherwise, set $p_t^k = p_{t-1}^k$
- 4. If T is reached or $S_t = \{1, 1, ..., 1\}$, Break Return decisions $S_{T \vee t}$

SEQUENTIAL ERROR GUARANTEE

Theorem 1 Let \mathcal{P} be a monotonic test procedure with a (f,q) guarantee. Then its sequential conversion \mathcal{C} of \mathcal{P} also has an (f,q) guarantee. That is,

$$\mathbb{E}[f(V_T, S_T)] \le q.$$

Furthermore, if \mathcal{P} only has an independent (f,q) guarantee, then \mathcal{C} only has an independent (f,q)-guarantee.

SEQUENTIAL CALCULATOR

- 1. Want a minimum sample size to guarantee power (β) and false discovery rate (α)
- 2. Using the Bonferroni correction,

$$\widetilde{N}^* = \max_{k \in \{1, \dots, m\}} \inf \left\{ t : \mathbb{P}(T^k \le t | H_1^k) \ge 1 - \frac{\beta}{m} \right\}$$

where T^k is the stopping time of test k (with FWER guarantee α) that stops under the following condition:

$$\Lambda_t^k \ge m/\alpha, \ \forall k \in \{1, \dots, m\}.$$

EXPERIMENTS

- 1. 1000 Hypothesis tests $\mu = 0$ vs $\mu \neq 0$
- 2. Truth: 200 $\mu = 0$, 800 μ evenly spread [-10, 10]
- 3. Sequential conversion against Benjamini-Hochberg
- 4. Averaged over 1000 independent runs

